• Title/Summary/Keyword: Electromagnetic Environment Effect(E3)

Search Result 4, Processing Time 0.025 seconds

Rerformance Analysis of 16 QAM System in a Composite Electromagnetic Interference Environment (복합 전자파 간섭 환경에서 16 QAM 시스템의 성능 분석)

  • 조광윤;조성언;노재성;강희조;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.285-292
    • /
    • 2001
  • In this paper, the analysis model of a composite electromagnetic interference environment is proposed, and the composite interference consists of three types, i.e., impulse, sinusoidal, and rectangular type. Also, we have derived the p.d.f of the amplitude of the composite interference. And using a derived p.d.f, we have evaluated the performance of 16QAM (Quadrature Amplitude Modulation) system in a composite electromagnetic interference environment. From the results, it is known that when impulse type interference is weaker than the others, the shape of p.d.f is dominantly governed by the power component ratio of sinusoidal and rectangular type interference. On the other hand, when impulse type interference is stronger, the effect of the other two interference becomes insignificant. Also, It is shown that the smaller both impulsive index (A) and the mean power component ratio ($\Gamma$') in impulse type interference are, the worse the performance of 16QAM system is.

  • PDF

Error Performance Analysis of Digital Radio Signals in an Electromagnetic Interference (EMI) Environment of Impulsive Noise Plus Disturbance (임펄스 잡음과 방해파에 의한 전자파 장해(EMI) 환경하에서의 디지털 무선통신 신호의 오율해석)

  • Cho, Sung-Eon;Leem, Kill-Yong;Cho, Sung-Joon;Lee, Jin
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.36-54
    • /
    • 1995
  • The error performance of digital radio signals (i.e., M-ary PSK signal, DQPSK signal, MSK signal, GMSK signal) interfered by impulsive noise and electromagnetic interference (EMI) is analyzed and discussed. In analysis at first, the error rate equations have been derived in an electromagnetic interference plus impulsive noise environment. And then, the error performance has been evaluated and shown in figures as a function of carrier-to-noise ratio, carrier-to-interference ratio, impu- lsive index, gaussian noise to impulsive noise power ratio, and interference index to measure the amount of error degradation in digital radio signals. From the obtained results we have known that in the presence of m-distributed tone interference plus inpulsive noise, the more significant the electromagnetic interference amplitude varies, the more significant performance degradation is produced. The listing the digital radio signals from the most degraded to the least is that DQPSK, GMSK, QPSK and MSK signal. In the constant amplitude tone interference plus impulsive noise environment, the effect of in- terference nearly disappears over about 20dB in CIR. The effect of constant tone interference on error rate performance is reduced more remarkably in the region from 10dB to 15dB in CIR. In both enviroments of m-distributed tone interference and constant amplitude tone interference, the more electromagnetic interference amplitude varies and CIR increases, the more error perfor- mance is improved. But it is found out that the performance can not be improved significantly even the electromagnetic interference becomes weak. This describes that the impulsive noise affects dominantly to the performance degradation.

  • PDF

Fundamental Investigation of Functional Property of Concrete Mixed with Functional Materials

  • Lee, Jong-Chan;Lee, Moon-Hwan;Lee, Sae-Hyun;Park, Young-Sin;Park, Jae-Myung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.165-171
    • /
    • 2006
  • Environment-friendly materials are increasingly used as building construction materials nowadays, and the market share of those is growing. Accordingly, the research and developments in terms of environmental value are progressing steadily now. The main characteristics of environmental products are far-infrared radiation, negative-ion emission, electromagnetic wave shielding, and antimicrobial property. These products are often used in mortar and as spray on the finishing material. Nevertheless, there are hardly any research on the functional properties of concrete, the main material in construction field. Thus, we evaluated such basic properties of concrete as slump, compressive strength and air content while using such functional materials as sericite, wood-pattern sandstone, carbon black and nano-metric silver solution to focus on their functional properties like far-infrared radiation, negative ion emission, electro magnetic wave shielding, and antimicrobial activity in this research. The results indicated that the most useful material in the functional materials was carbon black. Sericite and nano-metric silver solution had a little effect on the functional property. Moreover, although wood-pattern sandstone had very high functional property, it exhibited too low compressive strength to be applied, to concrete as a factory product. Antimicrobial property of nano-metric silver solution in the concrete was not clear demonstrated, but if these specimens were to be aged in $CO_2$ gas for a long time, it might be apparent.

A Research on the Static Discharger Installation Design and Test for Air Vehicle (항공기 외표면 정전기 방출기 장착설계 및 시험에 관한 연구)

  • Woo, Hee-Chae;Kim, Yong-Tae;Kim, Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.574-580
    • /
    • 2017
  • Static dischargers should be installed on air vehicle to emit a static electricity during flight. Especially, If static electricity is not removed by static discharger on the air vehicle, it makes ionization and corona effect on the edge of antenna and wing. Those phenomenon bring about performance degradation for radio communication and equipment operation. In this paper, the conditions such as climate, air vehicle's speed and frontal area were analyzed to design static dischargers. As a result, the static dischargers would be optimally designed for air vehicles and the performance of the static dischargers can verify according to the functional experiment. Therefore the result of this research will be used to make static discharger installation design for new air vehicle that have different size and mission.