• Title/Summary/Keyword: Electromagnetic Circuit

Search Result 1,153, Processing Time 0.037 seconds

A Study on T5 28W Fluorescent Lamp Ballast Using a Piezoelectric Transformer and One-chip Microcontroller (One Chip Microcontroller와 압전변압기를 이용한 T5 28W 형광등용 전자식 안정기에 관한 연구)

  • 황락훈;류주현;장은성;조문택;안익수;홍재일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2003
  • In this paper, T5 28-watt fluorescent lamp ballast using a piezoelectric transformer is fabricated and its characteristic is investigated. Developed electronic ballast is composed of basic circuits and blocks, such as rectifier part, active power factor corrector part, frequency oscillation part using microcontroller and feedback control, piezoelectric transformer and resonant half bridge inverters. The fabricated ballast uses to variable frequency methode in external so exciting that the frequency of piezoelectric transformer could be generated by voltage control oscillator using microcontroller(AT90S4433). The current of fluorescent lamp is detected by feedback control circuit. The signal of inverter output is received using Piezoelectric transformer, and then its output transmitted to fluorescent lamp. Traditional electromagnetic ballasts operated at 50-60Hz have been suffered from noticeable flicker, high loss, large crest factor and heavy weight. A new electronic ballast is operated at high frequency about 75kHz, and then Input power factor, distortion of total harmonic and lamp current crest factor are measured about 0.9!35, 12H and 1.5, respectively Accordingly, the traditional ballast is by fabricated electronic ballast using piezoelectric transformer and voltage control oscillator because of its lighter weight, high efficiency, economic merit and saving energy.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Development and Complementation of Evaluation Area and Content Elements in Electrical, Electronics and Communications Subject (중등교사 임용후보자선정경쟁시험 표시과목인 전기·전자·통신의 평가영역 및 내용요소 개발·보완 연구)

  • Song, Youngjik;Kang, Yoonkook;Cho, Hanwook;Gim, Seongdeuk;Lim, Seunggak;Lee, Hyuksoo
    • 대한공업교육학회지
    • /
    • v.44 no.1
    • /
    • pp.52-71
    • /
    • 2019
  • The quality of school education is a key element for national education development. An important factor that determines the quality of school education is qualities of teachers who are in responsible for school education in the field. Therefore, it is necessary to hire competent teachers in the teacher appointment exam for the secondary school. This necessity is evident especially for vocational high schools and Meister high schools with the introduction of 2015-revised curriculum based on NCS that separates each three subjects, "Electrical, Electronics Communication" resulting in the change of question mechanism, which requires new designing of assessment and content area. So, this study analyzes curriculum in college of education for "Electrical", "Electronics", "Communication", 2015-revised curriculum based on NCS and the development of standards for teacher qualifications and assessment area and evaluation of teaching ability in the subjects of the teacher appointment exam, "Electrical, Electronics Communication" Engineering" in 2009. The assessment area and content elements of "Electrical", "Electronics", "Communication are extracted from the analyzed results and they are verified by experts' consultation and presented as follows; First, the assessment area and content elements of the "Electrical" subject were designed to evaluate the NCS - based 2015 revised curriculum by presenting the NCS learning module to the evaluation area and content element in the basic subject "Electrical and Electronics Practice". Second, the section of "Electronics" presented the assessment area and content elements applying the Electronic Circuit, basic subject of the NCS and it also added "Electromagnetics", which is the basic part of Electronics in the Application of Electromagnetic waves that could be applied to the assessment. Third, the assessment area and content elements of "Communication" consist of the communication-related practice that is based on "Electrical" and "Electronic", considering the characteristics of "Communication Engineering". In particular, "Electrical and Electronics practice" which adds network construction practice and communication-related practice makes it to be able to evaluate the communication-related practical education.