• Title/Summary/Keyword: Electromagnetic Brake(EMBR)

Search Result 6, Processing Time 0.027 seconds

A Numerical Study on the Flow Fields in the Continuous Casting Mold with Electromagnetic Brake (EMBR이 적용된 연속주조 몰드 내부에서의 유동장 해석)

  • Ha M. Y.;Lee H. G.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 1999
  • We developed a computer program to simulate the flow field in the presence of electro-magnetic fields. The steady, two-dimensional conservation equations for mass and momentum were solved simultaneously with Maxwell equations for electro-magnetic fields. Using this program, a numerical analysis was carried out to analyze the fluid flow in the continuous casting mold with electromagnetic brake. The effects of magnetic fields size, nozzle angle and EMBR yoke position on the flow fields in the continuous casting were investigated in the present study. The flow fields with EMBR were compared with those without EMBR. We also investigated the distribution of tracer concentration as a function of time in order to calculate their residence time in the mold with EMBR. By controlling the flow fields properly using EMBR, we can prevent the direct flow impaction on the wall which can give a damage on the mold surface and reduce surface defects of stainless steel sheet products.

  • PDF

Three-Dimensional Analysis of the Coupled Turbulent Flow and Solidification During a Continuous Casting Process with Electromagnetic Brake (전자기 브레이크를 적용한 연속주조공정에서의 난류유동 및 응고의 3차원 해석)

  • Kim, Deok-Soo;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1254-1264
    • /
    • 1999
  • A three-dimensional coupled turbulent fluid flow and solidification process were analyzed in a continuous casting process of a steel slab with Electromagnetic Brake(EMBR). A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. The electromagnetic field was described by Maxwell equations. Tile application of EMBR to the mold region results in the decrease of the transfer of superheat to the narrow face, the increase of temperature in free surface region and most liquid of submold region, and the higher temperature gradient near the solidifying shell. The increasing magnetic flux density effects mainly to the surface temperature of the solidifying shell of narrow face, hardly to the one of wide face. It is seen that in the presence of EMBR a thicker solidifying shell is obtained at the narrow face of the slab.

A Study on the Turbulent Flow and Solidification in a Continuous Casting Process with Electromagnetic Brake (EMBR을 이용한 연주공정에서의 난류유동 및 응고에 대한 연구)

  • Kim, Deok-Soo;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.374-387
    • /
    • 1999
  • Two-dimensional turbulent fluid flow and solidification were investigated in a continuous casting process of a steel slab with electromagnetic field. The electromagnetic field was described by the Maxwell equations. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. It is shown that the temperature gradient in the casting direction in the case with EMBR becomes very weak compared to that of the case without EMBR. The results also show that the velocity profiles of the case with solidification are quite different from those of the case without solidification.

Numerical analysis of continuous casting process with electromagnetic brake (연속주조공정에서의 EMBR의 수치해석)

  • 김현경;유흥선;유수열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.766-773
    • /
    • 1999
  • A numerical analysis has been performed solidification problem using the fixed grid-enthalpy method with enthalpy-porosity relation. A modified standard $k-\varepsilon$ model was applied to describe the influence of turbulent flow. Computational procedures are based on the finite volume method and the non-staggered grid system. Comparisons with the different three experimental results show that applying a modified standard $k-\varepsilon$model in mushyzone is better than the previous computation results. This paper includes another EMBR's influences such as change of velocity field, Increasement of temperature and dispersion of flow out of nozzle into the flow field. These EMBR's influences are compared to case without EMBR.

  • PDF

Coupled Turbulent Flow, Heat and Solute Transport in Continuous Casting Processes with EMBR (EMBR을 이용한 연속주조공정에서 난류 유동, 상변화 및 매크로 편석에 대한 연구)

  • Kang, Kwan-Gu;Ryou, Hong-Sun;Hur, Nahm-Keon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1195-1200
    • /
    • 2004
  • A fully coupled fluid flow, heat, and solute transport model was developed to investigate turbulent flow, solidification, and macrosegregation in a continuous casting process of steel slab with EMBR. Transport equations of mass, momentum, energy, and species for a binary iron-carbon alloy system were solved using a continuum model. The electromagnetic field was described by the Maxwell equations. A finite-volume method was employed to solve the conservation equations associated with appropriate boundary conditions. The effects of intensity of magnetic field and carbon segregation were investigated. The electromagnetic field reduces the velocity of molten flow in the mold and an increase in the percentage of C in steel results in a decrease of carbon segregation ratio.

  • PDF

A Numerical Analysis of Molten Steel Flow Under Applied Magnetic Fields in Continuous Casting

  • Yoon, Teuk-Myo;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2010-2018
    • /
    • 2003
  • Although continuous casting process has highly developed, there still remain many problems to be considered. Specifically, two vortex flows resulting from impingement against narrow walls make a flow field unstable in a mold, and it is directly related to internal and external defects of steel products. To cope with this instability, EMBR (Electromagnetic Brake Ruler) technique has been lately studied for the stability of molten steel flow, and it is revealed that molten steel flow in a mold can be controlled with applied magnetic field. However, it is still difficult to clarify flow pattern in an EMBR caster due to complex correlations among variables such as geometric factors, casting conditions, and the place and the intensity of charged magnetic field. In the present study, flow field in a mold is focused with different conditions of electromagnetic effect. To accurately analyze the case, three dimensional low Reynolds turbulent model and appropriate boundary conditions are chosen. To evaluate the electromagnetic effect in molten steel flow, dimensionless numbers are employed. The results show that the location and the intensity of the applied magnetic field significantly influence the flow pattern. Both impingement and internal flow pattern are changed remarkably with the change of the location of applied magnetic field. It turns out that an insufficient magnetic force yields adverse effect like channeling, and rather lowers the quality of steel product.