• Title/Summary/Keyword: Electromagnetic Absorption

Search Result 297, Processing Time 0.026 seconds

Study of Electromagnetic Wave Absorption Properties with Particle Size in Soft Magnetic Alloy Powder (연자성 합금 분말의 입자크기에 따른 전자파 흡수 특성 비교)

  • Hong, S.H.;Sohn, K.Y.;Park, W.W.;Nam, J.M.;Moon, B.G.;Song, Y.S.
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.261-264
    • /
    • 2007
  • The electromagnetic wave (EM) absorption properties of various particle size have been investigated in a sheet-type absorber using the $Fe_{73}Si_{16}B_{7}Nb_{3}Cu_{1}$ alloy powder. With decreasing the average particle size, the complex permeability (${\mu}_{r}$) and permittivity (${\varepsilon}_{r}$) increased and the matching frequency is shifted toward lower frequency. The fabricated EM wave absorbers showed permeability $2{\sim}6$, permittivity $17{\sim}23$ for a $-325{\sim}+400$ mesh sample, and the calculated power absorption was as high as 80% in the frequency range over 2 GHz.

Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption (전자기파 흡수용 복합재료의 기계적 강도평가)

  • 오정훈;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF

A Simulation and Property Analysis according to Electromagnetic Wave Absorber Shape

  • Kwon, Seok Hun;Hwang, Hyun Suk;Kang, Hyunil
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.1-5
    • /
    • 2018
  • The property of magnetic field and properties of EMW(Electro Magnetic Wave) absorption with multi-shaped EMW absorber was simulated. As a magnetic field having high density was showed at bottom of EMW absorber, simulation showed that overall EMW was absorbed at the bottom of multi-shaped absorber. The absorption properties of EMW according to thickness of absorber showed that it enhanced about 50-60 percent. Also, EMW absorption properties was checked with surface area of EMW absorber. A cylinder-shaped EMW absorber exhibited good property among multi-shaped EMW absorber based on these result.

Design of Thin RC Absorbers Using a Silver Nanowire Resistive Screen

  • Lee, Junho;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • A resistive and capacitive (RC) microwave absorber with a layer thickness less than a quarter of a wavelength is investigated based on closed-form design equations, which are derived from the equivalent circuit of the RC absorber. The RC absorber is shown to have a theoretical 90% absorption bandwidth of 93% when the electrical layer thickness is $57^{\circ}$ (about ${\lambda}_0/6$). The trade-offs between the layer thickness and the absorption bandwidth are also elucidated. The presented formulation is validated by a design example at 3 GHz. The RC absorber is realized using a silver nanowire resistive rectangular structure with surrounding gaps. The measured 90% absorption bandwidth with a layer thickness of ${\lambda}_0/8$ is 76% from 2.3 GHz to 5.1 GHz in accordance with the theory and EM simulations. The presented design methodology is scalable to other frequencies.

A Study on the Measurement of Absorbption Characteristics for Ferrite Electromagnetic Wave Absorbers Using Parallel Stripline. (평형스트립라인을 이용한 페라이트계 전파흡수체의 특성측정에 관한 연구)

  • 김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 1993
  • The goal of this research is to get a measuring system for absorption characteristics over the frequency band with 30MHz to 1, 000MHz concerning the ferrite electromagnetic wave absorbers, for example, grid-type and sintered flat type, etc. It is, however, very difficult to measure the absorption characteristics as in low frequency as in 30 MHz. In this research, therefore, we propose a standing wave method using parallel striplines, fabricate the measuring system, and measure the characteristic of ferrite microwave absorbers using the proposed mea-suring system.

  • PDF

Electromagnetic Induced Absorption in 5-level Atom using Density Matrix Equation (밀도행렬방정식을 이용한 5-준위 원자에서의 전자기 유도 흡수)

  • 권미랑;문한섭;김경대;박현덕;김중복
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.200-201
    • /
    • 2000
  • 원자와 빛의 결맞음 효과로서 나타나는 많은 흥미로운 현상들 중에서 전자기파 유도 투과(Electro-magnetic Induced Transparency ; EIT)는 원자가 공진주파수를 가진 레이저와 상호작용하였을 때, 광자를 흡수하지 않고 투과하는 현상으로서, 주로 3준위 구도에서 연구되어왔다. 그러나 최근 축퇴된 2준위 구도에서 원자와 빛의 결맞음 효과가 연구되면서 EIT와 정반대의 현상인 전자기 유도 흡수(Electromagnetic Induced Absorption ; EIA)의 관측이 보고되었고 그것과 연관된 물리적 특성들의 연구가 시도되고 있다. (중략)

  • PDF

Absorption Properties according to Particle Size of Ferrite in EM Wave Absorber for Mobile Phone (휴대전화용 전파흡수체에 있어서 페라이트 입자 크기의 제어에 따른 전파흡수특성)

  • 송재만;김동일;김수정;옥승민;김보영;박우근;이영구;윤현진;김기만
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.290-295
    • /
    • 2003
  • In this study, we investigated the effect of particle size of Mn-Zn ferrite which is used as a material of electromagnetic wave absorber on electromagnetic wave properties. With increasing the particle size, the matching frequency is shifted toward lower frequency and the absorption ability of electromagnetic wave is decreased. We suggest that a sheet-type ferrite absorber composed of Mn-Zn ferrite with large particle is useful to compare with it composed of small particle size for mobile phone.

An Applicable Method of an Electromagnetic Wave Absorber for SAR Reduction in the Human Head Exposed to Electromagnetic Fields Radiated by a Cellular Phone (휴대폰 전자파에 노출된 두부내 SAR 저감을 위한 전자파 흡수체 적용 방법 연구)

  • 이윤경;백락준;홍진옥;육재림;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.884-890
    • /
    • 2003
  • In order to reduce the specific absorption rate(SAR) in a human head exposed to electromagnetic fields radiated by a cellular phone, we have analyzed an electromagnetic wave absorber attached to the handset. A manufactured electromagnetic wave absorber was composed of Mn - Zn, which had complex relative permittivity of 7.30-j0.05 and permeability of 2.20-i1.55. The SAR value from the electromagnetic wave absorber attachment was calculated by using the nonuniform finite difference time domain(FDTD) algorithm and measured by phantom model at 835 MHz. The SAR reduction due to the electromagnetic wave absorber are about 18 % at 835 MHz. The V.S.W.R and radiation pattern of antenna are good agreement with the normal antenna. The gain reduction due to the electromagnetic wave absorber are only 0.3 dB at 835 MHz. But the sensitivity of cellular phone generally improves about 1 dB.

Effects of Sheet Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr/Polymer Composite Sheets (FeSiCr/폴리머 복합 시트의 전자파 흡수 특성에 미치는 시트 두께의 영향)

  • Noh, Tae-Hwan;Kim, Ju-Beom
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.143-148
    • /
    • 2010
  • This study examined the effects of sheet thickness on electromagnetic wave absorption characteristics and internal microstructure in 92.6%Fe-6.5%Si-0.9%Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band. The composite sheets with the thickness of 0.3, 0.4 and 0.5 mm were prepared by tape casting. A significant decrease in transmission parameter $S_{21}$ and a large increase in power loss were observed for the thick composite sheet in the frequency range of 1~5 GHz. However the permeability properties were not affected by thickness variation, while the imaginary part of complex permittivity increased with the increase of sheet thickness at 1~5 GHz. The enhanced electromagnetic wave absorption characteristics in the thicker composite sheets was attributed to the changed microstructure and the higher dielectric loss.

Electromagnetic Wave Absorption Properties of Fe73Si16B7Nb3Cu1-Based Nanocrystalline Soft Magnetic Powder Composite Mixed with Charcoal Powder (나노결정 Fe73Si16B7Nb3Cu1 연자성분말과 숯분말 혼합 복합성형체의 전자파흡수 특성)

  • Kim, Sun-I;Kim, Mi-Rae;Sohn, Keun-Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.291-295
    • /
    • 2009
  • The electromagnetic wave absorption sheets were fabricated by mixing of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz$\sim$10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz$\sim$1 GHz.