• Title/Summary/Keyword: Electromagnetic Absorption

Search Result 298, Processing Time 0.026 seconds

Plate Forging Process for Near-net Shaping of Mg-alloy Sheet (마그네슘합금 판재 정밀성형을 위한 판단조 공정 연구)

  • Song, Y.H.;Kim, S.J.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • Magnesium alloys are used in electronic devices such as laptops due to their lightweight features as well as vibration absorption and electromagnetic shielding properties. However, the precision of electronics is limited by the large number of small and precise ribs, the cost-effective manufacture of which requires appropriate technology. Plate forging is an efficient manufacturing process that can address these challenges. In this study, plate forging of magnesium alloys was investigated specifically for the fabrication of laptop cover. The plate forging process with back-pressure was used for near-net shape formation. Finite element analysis was used to select appropriate variables for back-pressure formation to generate ribs of various sizes and shapes without defects. The reliability of the analysis was verified to manufacture the prototype. The effect of back-pressure can be verified via fabrication of prototypes as well as structure and forming analysis based on finite element method. The process design factor of back-pressure increases formability without defects of under-filling and flow-through. Moreover, the tensile strength was maintained even after high temperature plate forging at 370 ℃, and the elongation was improved.

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

Design of Headset MIMO Antenna for On-Body Application (인체부착형 Headset MIMO 안테나 설계)

  • Kim, Sung-Jin;Kim, Dong-Ho;Kwon, Kyeol;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1107-1115
    • /
    • 2011
  • In this paper, a headset multiple-input multiple-output(MIMO) antenna for on-body application is proposed and the antenna performance with body effect and the impact on human body are investigated. The proposed MIMO antenna is composed of two planar inverted-F antennas(PIFA) above ground plane and an isolator located between the two antennas enhance the isolation characteristic. Simulation was carried to analyze the effect of human body on antenna performance when a human body is located in the near field of the antenna. According to the measurement result, the diversity performance of the proposed antenna can be considered good since ECC(Envelope Correlation Coefficient), which commonly indicates the performance of a MIMO antenna, remains below 0.1 over the ISM band. The measured SAR values for antennas 1 and 2 are 0.575 W/kg and 0.571 W/kg, respectively when 250 mW input power in engaged. These values satisfy the FCC guideline which states that the 1-g average SAR should be lower than 1.6 W/kg.

Human Effect for Commercial Wireless Power Transfer System Operating at Low Frequency (상용 자기유도방식 무선전력전송 시스템의 인체영향 분석)

  • Kang, Jun-Seok;Lee, Seungwoo;Hong, Ic-Pyo;Cho, In-Kui;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.382-390
    • /
    • 2017
  • In this paper, we consider particular exposure scenarios to evaluate human effects for inductive commercial wireless charging device operating at low frequency. The coil used in this study is the A10 model in Qi standard proposed by WPC(Wireless Power Consortium), and input power is 5 W to the operating frequency of 155 kHz. In perfectly aligned condition, the max leakage magnetic field is $257.58{\mu}T$ which is obtained at the side of the device, and it is exceeded about 7.4 times of the ICNIRP 1998 reference level. The SAR is evaluated with homogeneous phantom which has electric constants of wet skin. The max value of the SAR is $134.47{\mu}W/kg$ which is obtained at the side of the device also, and it is much lower than the international guidelines. Especially, it showed higher SAR values in case of misalignment condition, so we will need to consider the misalignment condition importantly when we evaluate human effects for wireless power transfer system.

Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using MUR and GPML ABCs in the FDTD Method (유한차분법에서 MUR과 GPML 흡수경계조건을 이용한 동축 도파관 안테나에 접촉된 생체의 SAR 패턴 비교)

  • 구성모;권광희;이창원;원철호;조진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • The SAR patterns of biological objects contacted with coaxial waveguide antennal has been investigated, in which the biological object was modeled by a homogeneous and four-layered lossy human body. We derived the finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) ABCs in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of MUR and GPML ABCs in the FDTD method to obtain the absorbed power patterns in the media. The specific absorption rates (SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in the FDTD method. The SAR patterns of the FDTD method using MUR absorbing boundary conditions(ABCs) was compared with those of the FDTD method using GPML ABCs. The comparison exhibits that the penetration depth of the SAR patterns using MUR ABCs is deeper than that of the SAR patterns using GPML ABCs because of loss in free space. However, the spread in the lateral directions of the SAR patterns using GPML ABCs is smaller than of the SAR patterns using MUR ABCs.

  • PDF

Fabrication of Lightweight Microwave Absorbers with Co-coated Hollow Silica Microspheres (저밀도 실리카 중공미세구 표면에 Co 박막의 코팅에 의한 경량 전파흡수체 제조)

  • Kim, Sun-Tae;Kim, Sung-Soo;Ahn, Jun-Mo;Kim, Keun-Hong
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.67-75
    • /
    • 2005
  • For th aim of lightweight microwave absorbers, conductive and magnetic microspheres are fabricated by plating of Co films on hollow ceramic microspheres of low density. Metal plating was carried out in a two-step electroless plating process (pre-treatment of activation and plating). Uniform coating of the film with about $2{\~}3{\cal}um$ thickness was identified by SEM. High-frequency magnetic and microwave absorbing properties were determined in the rubber composites containing the Co-coated microspheres. Due to conductive and ferromagnetic behavior of the Co thin films, high dielectric constant and magnetic loss can be obtained in the microwave frequencies. Due to those electromagnetic properties, high absorption rate (25 dB) and thin matching thickness ($2.0{\~}2.5{\cal}mm$) are predicted in the composite layers containing the metal-coated microspheres of low density (about 0.84 g/cc) for the electromagnetic radiation in microwave frequencies.

Design and SAR Analysis of Broadband Monopole Antenna Using Loop and T-Shaped Patches (사각 루프와 T자형 패치를 결합한 광대역 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Jang, Ju-Dong;Lee, Seungwoo;Kim, Nam;Choi, Dong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, a broadband planar monopole antenna for multi-band services is proposed. The physical size of the proposed antenna is miniaturized by folding a rectangular loop. And a resonance point in the 3.9 GHz band is reduced by a coupling phenomenon with the central part of the T-shaped patch and the folded rectangular loop. In addition, the T-shaped patch is inserted to the rectangular shaped monopole antenna due to deriving the broadband frequency characteristics. The frequency characteristic is optimized by adjusting the gap and length of the folded rectangular loops and a transverse diameter of the T-shaped patch. The antenna dimensions including the ground plane are $40{\times}60{\times}1.6mm^3$. It is fabricated on the FR-4 substrate(${\epsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. In the measured result, the bandwidth corresponding to the VSWR of 2:1 is 162 MHz(815~977 MHz) and 2,530 MHz(1.43~3.96 GHz). For analyzing the human effect by the proposed antenna, 1 g and 10 g averaged SARs are simulated and measured. As the simulated results, 1 g-averaged SAR is 1.044 W/kg, and 10 g-averaged SAR is 0.718 W/kg. This result are satisfied by the SAR guidelines which are 1.6 W/kg(1 g-averaged) and 2.0 W/kg(10 g-averaged).

A Study on the SAR Measurement System Validation at 150 MHz Band (150 MHz 대역에서의 SAR 측정시스템의 유효성 연구)

  • Choi, Donggeun;Kim, Kihwea;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.1008-1016
    • /
    • 2013
  • SAR measurement which was applied only to the mobile phone has been expanded in the Korean radio regulation law to the portable wireless communication equipments within 20 cm from the human body since Jan. 2012. The two-way radio operating at 150 MHz frequency band was newly included following the revised radio regulation in the target equipment of measurement. SAR measurement system at 150 MHz satisfying this regulation is necessary accordingly for SAR conformity assessment. The international SAR measurement standard(IEC 62209-2) includes the evaluation method on frequencies above 300 MHz, and the commercial SAR measurement system can measure SAR above 300 MHz only. The size of the reference dipole antenna(760 mm, return loss: -27.57 dB) and flat phantom ($1,300 mm(L){\times}900 mm(W){\times}200 mm(H)$), targeted SAR values for numerical analysis(1 g: 1.08 W/kg, 10 g: 0.77 W/kg) for SAR validation evaluation at 150 MHz frequency are proposed in this paper. The suggested dipole antenna and flat phantom are assembled and used to verify the conformity assessment of commercial SAR measurement system. The measured SAR values of 1 g and 10 g were obtained respectively to be 1.13 W/kg, 0.81 W/kg, and they satisfied the effective range(within ${\pm}10$ %) of IEC international standard. The standards based on this study are expected to be used for the domestic SAR measurement standard and IEC(International Electrotechnical Commission) international standard.

High Frequency Properties of Fe93.5Si6.5 Magnetic Powder/Epoxy Composite Film (Fe93.5Si6.5 자성분말/에폭시 복합재 필름의 고주파 특성)

  • Hong, Seon-Min;Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Composites of $Fe_{93.5}Si_{6.5}$ powder and epoxy were prepared using a thermal curing process. Scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and network analyzer were used to analyze the structure, electromagnetic properties and microwave absorption of the composites. Results show that the saturation magnetization depends on the fraction of the $Fe_{93.5}Si_{6.5}$ powder in the composite, which affects initial permeability. It is believed that the eddy current loss is a dominant factor over 1 GHz and that the resonance frequency of the composite decreases with increasing fractions of $Fe_{93.5}Si_{6.5}$ powder. Finally, reflection loss was calculated from the permeability and permittivity of these composites. Composite with 50 wt.% $Fe_{93.5}Si_{6.5}$ powder fractions and 5 mm thickness showed reflection loss below -20 dB from 3.66 GHz to 4.16 GHz. Therefore, it is believed that thin Fe-Si/epoxy composites may be a good candidate for microwave absorption application.

A Study on EM Wave Absorber for Electromagnetic Wave Environment of Wireless LAN at 5.2 GHz (5.2 GHz 무선 LAN의 전자파 환경 대책용 전파흡수체에 관한 연구)

  • Yoo, Gun-Suk;Choi, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Recently, the wireless LAN system is rapidly growing because of its convenience of high speed communication. However, the wireless LAN systems at indoor places occur multi-propagation path by reflected waves from walls, ceilings, floors, and desks. Multipath problems cause transmission errors and degradation of communication speed. These problems can be solved by using EM wave absorbers. In this paper, we analyzed property of Graphite and derived the optimum ratio of Graphite: CPE to develop EM wave absorber for the wireless LAN system. First, we fabricated several samples in different composition ratios of Graphite and CPE, and then measured the reflection coefficient of each samples. Material constants of permittivity and permeability were calculated using the measured data and designed EM wave absorber. Secondly, the EM wave absorber was fabricated and tested on the base of the simulation data. As a result, it showed that the EM wave absorber in 1.7 mm thickness with the ratio of Graphite: CPE=50:50 wt.% has excellent absorption ability more than 27 dB at 5.2 GHz.