• 제목/요약/키워드: Electrolytic-reduction

Search Result 160, Processing Time 0.027 seconds

Evaluation of the Stability of Oxidation-Reduced Potential (ORP) Using the Filter of the Alkaline Water (알칼리 환원수 필터의 산화환원전위 안정화 평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.129-135
    • /
    • 2016
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. Evaluation of the stability of oxidation-reduced potential (ORP) using the filter of the alkaline water. This study utilizes the three filter of activated carbon, UF, carbon block in alkaline reduced water equipment. Passing the water to the filter is evaluated that the OPR values are stability in accordance with the change of the volume in the bucket. Alkaline reduced water equipment is a system that has the function of making the water reduction. This system is the values of the human body beneficial minerals and ORP are made in the functional water has a very low value than general water. Which has passed through the filter the water in the water negative ions and positive ions through the electrolytic. After electrolysis, the cathode side by water, including $Ca^+$, $K^+$, $Mg^+$, $Na^+$ water gets Alkaline Reduced Water containing the minerals beneficial to the human body. A positive electrode side is made of the organic materials that have an anion such as chlorine (Cl), phosphorus (P), sulfur(S). This experiment uses the Alkaline Reduced Water to adjust the magnitude of the voltage of the electrolysis in the Alkaline Reduced Water. That is 1st step(pH8) 2nd step (pH8.5) 3th step (pH9), 4th step (pH9.5) in the Alkaline Reduced Water and -1st step (pH6.0), -2nd step (pH5.0) used as the acidic oxidation water. When the water passes through the three filter in this system was evaluated whether the ORP values are changed and stabilized. When about 100 liters of water passing through the filter was confirmed that the ORP values are stability and evaluation.

Overview of Zirconium Production and Recycling Technology (지르코늄의 제조(製造)와 재활용기술(再活用技術))

  • Park, Kyoung-Tae;Kim, Seung-Hyun;Hong, Soon-Ik;Choi, Mi-Sun;Cho, Nam-Chan;Yoo, Hwan-Jun;Lee, Jong-Hyeon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.18-30
    • /
    • 2012
  • Zirconium is one of the most important material used as cladding of fuel rods in nuclear reactors because of its high dimensional stability, good corrosion resistance and especially low neutron-absorbing cross section. However, Hf free nuclear grade Zr sponge is commercially produced by only three countries including USA, France and Russia. So, Zr has been thoroughly managed as a national strategic material in Korea. Most of the zirconium is used for Korean nuclear industry as nuclear fuel cladding materials manufactured from Hf free Zr alloy raw material. Also, there are some other applications such as alloying element and detonator. In this review, zirconium production and recycling technologies have been reviewed and current industrial status was also analyzed. And recent achievements in innovative reduction technologies such as electrolytic reduction process and molten oxide electrolysis were also introduced.

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

The Oxidation Study of Pure Tin via Electrochemical Reduction Analysis (전기화학적 환원 분석을 통한 Sn의 산화에 대한 연구)

  • Cho Sungil;Yu Jin;Kang Sung K.;Shih Da-Yuan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.55-62
    • /
    • 2004
  • The oxidation of pure Sn and high Pb-Sn alloys was investigated under different oxidizing conditions of temperature and humidity. Both the chemical nature and the amount of oxides were characterized using electrochemical reduction analysis by measuring the electrolytic reduction potential and total transferred electrical charges. For pure tin, SnO grew faster under humid condition than in dry air at $85^{\circ}C$. A very thin (<10 ${\AA}$) layer of SnO, was formed on the top surface under humid condition. The mixture of SnO and $SnO_2$ was found for oxidation at $150^{\circ}C$. XPS and AES were performed to support the result of oxide reduction.

  • PDF

NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers (전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구)

  • Park, Soo-Jin;Jang, Yu-Sin;Kawasaki, Junjiro
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.664-668
    • /
    • 2002
  • In this work, the catalytic reduction mechanisms of NO over ACFs/copper prepared by electrolytic copper plating has been studied. It was found that copper content on carbon surfaces increased with increasing the plating time. However, a slightly gradual decrease of adsorption properties, such as, BET specific surface area, was observed in increasing the plating times within the range of well-developed micropore structures. As experimental results, nitric oxide was converted into the nitrogen and oxygen on ACFs and ACFs/copper catalyst surfaces at $500^{\circ}C$. Especially, the surfaces of ACFs/copper catalyst were found to scavenge the oxygen released by catalytic reduction of NO, which could be explained by the presence of another nitric oxide reduction mechanism between ACFs and ACFs/copper catalysts.

Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery (실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가)

  • Kim, Eun-Ji;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

Evaluate of Electrochemical Characteristics in Electrolyzed Reduced Water

  • Park, Sung-Ho;Yun, Su-Jin;Kim, Jeong-Sik;Shin, Hyun-Su;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.85-90
    • /
    • 2011
  • Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. Electrolyzed reduced water(ERW) has been regarded as a ideal antioxidative agent in recent years. ERW is produced by passing a diluted salt solution through an electrolytic cell, within which the anode and cathode are separated by membrane. It can be produced reactive materials in ERW near the cathode during the electrolysis of water. ERW have the following advantages over other traditional cleaning agents: effective antioxidative agent, easy preparation, inexpensive, and environmentally friendly. The main advantage of ERW is its safety and antioxidative effect. ERW with strong reducing potential can be used to remove dirt and grease from items such as cutting boards and other kitchen utensils. The primary aim of this study is the activation mechanism of oxidation reduction potentials, ion conductivity, pH, and electrochemical properties with reactive materials in ERW.

Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector

  • Ramadhan, Revink A.;Abdullah, Khairi MS.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.462-469
    • /
    • 2018
  • The background spectrum of a $3^{{\prime}{\prime}}{\times}3^{{\prime}{\prime}}$ NaI(Tl) well-type scintillation SILENA detector was measured without shielding, in 6 cm thick lead shielding, and with 2 mm thick electrolytic copper covering the detector inside the lead shielding. The relative remaining background of the lead shield lined with copper was found to be ideal for low-level environmental radioactive spectroscopy. The background total count rate in the (20-2160 KeV) was reduced 28.7 times by the lead and 29 times by the Cu + Pb shielding. The effective reduction of background (1.04) by the copper mainly appeared in the energy range from X-ray up to 500 KeV, while for the total energy range the ratio is 1.01 relative to the lead only. In addition, a strong relation between the full-energy peak absolute efficiency and the detector well height was found using gamma-ray isotropic radiation point sources placed inside the detector well. The full-energy peak efficiency at a midpoint of the well (at 2.5 cm) is three times greater than that on the detector surface. The energy calibrations and the resolution of any single energy line are independent of the locations of the gamma source inside or outside of the well.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Analysis of a Two-Phases System of Mass Transfer and Electro-Reduction of Uranium(VI) in Nitric Acid-Hydrazine Media (질산-하이드라이진 매질에서 우라늄(VI)의 물질전달과 전기적 환원을 갖는 이 상계의 해석)

  • Kim, K.W.;Yoo, J.H.;Park, H.S.;Kim, J.D.;Aoyagi, H.;Yoshida, Z.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.216-225
    • /
    • 1995
  • Simulation for a dynamic analysis of the electrolytic preparation of U(IV) in two-phases system, which consisted of mass transfer of U(VI) from TBP phase into HNO$_3$ solution and electrolytic re-duction of U(VI) to U(IV) at a cathode in aqueous phase, was carried out in order to establish the most suitable operating condition and best electrode area as basic design data for the system. It was found that maintaining an appropriate mass transfer rate was more significant rather than enlarging the surface area of the cathode for more effective production yield of U(IV). The electrode area and the operation time affected deeply the production composition of U(IV) in the resulting aqueous phase. And optimal electrode areas ore evaluated to meet production criteria of U(IV) of resulting solution in several system conditions. Though about 0.37M HNO$_3$ was preferable to prepare the solution of U(IV), nitric acid concentration should be higher than 0.5M to prevent a hydrolysis of U(IV) in the aqueous phase.

  • PDF