• Title/Summary/Keyword: Electrolytic process

Search Result 320, Processing Time 0.025 seconds

A Study on the Generation of Mirror-like Surface and Simulation in Grinding Condition by Inprocess Electrolytic Dressing (연속 전해드레싱의 연삭조건변화에 의한 경면생성 및 시뮬레이션에 관한 연구)

  • 김정두;이연종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2962-2969
    • /
    • 1993
  • Recently, a study on the mirror-like surface grinding of brittle materials is active and as branch of these study, new dressing method for superabrasive wheel, electrolytic inprocess dressing(Elid) was developed. Using Elid, the mirror-like surface of brittle material can be generated without polishing or lapping process. In the future, Elid grinding will take important place in industry. But so far the analysis on Elid grinding was not quantitative but qualitative. In this study, The purpose is the quantitative analysis on Elid grinding by computer simulation, For computer simulation, the mean and the variance of the abrasive distribution were measured by tracing of the grinding wheel with stylus in transverse direction in the case of respective dressing current condition. This measurement result in a density distribution of abrasive by mathematical formulation using statistical method. The prediction of the surface roughness in Elid grinding was based on this density distribution.

Model development for chlorine generation using electrolysis (전기분해에 의한 잔류염소 생성 예측 모델 개발)

  • Sohn, Jinsik;Lee, Sunjae;Shin, Chorong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.331-337
    • /
    • 2009
  • Electrolysis produces hypochlorous acid by using a small quantity of NaCl as electrolyte. This process maximizes the stabilization of drinking water through the control of chlorine residual concentration. This study investigated free chlorine generation by an electrolytic method using $Ti/IrO_2$ and stainless steel. The generation of free chlorine was increased with increasing hydraulic retention time, voltage, chlorine ion concentration and the number of electrodes. However, the change of pH did not affect the generation of free chlorine. There was no significant difference on the behavior of chlorine concentration between electrolytic method and NaOCl injection. In this study, the concentration of free chlorine predicted model based on power functional model was developed various under conditions. Electrolysis free chlorine generation model can be effective tool in the estimation of free chlorine generation.

A Study on the Polishing of Stainless Steel by Magneto Electrolytic (자기전해에 의한 스테인레스강의 폴리싱에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.38-43
    • /
    • 1998
  • Magneto Electrolytic Polishing (MEP) is a process in which metal ions are removed from a abrasive through a combination of magnetic electric current and chemical solution. The substrate is immersed into the magnetic effect, chemical solution, and DC crunt is applied. Several factors affect the rate at which the metal ions are removed from the substrate. Three of the most significant are the amount of time in which the substrate is immersed I the solution, and the amount of direct current applied in magnetic field. In this study, the surface finishing characteristics and optical finishing condition for the stainless steel were experimented upon and analyzed.

  • PDF

Plasma Electrolytic Oxidation Treatment of Al Alloys (알루미늄 합금의 플라즈마전해산화 처리 기술)

  • Mun, Seong-Mo;Kim, Ju-Seok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.115.2-115.2
    • /
    • 2016
  • Al alloys are being used widely for automobile, aerospace and mechanical components because of their high strength ratio to weight. However, still they suffer from abrasion or corrosion owing to insufficient resistances to friction or mechanical impact and chemical attack. Plasma electrolytic oxidation (PEO) method is one of the promising surface treatment methods for Al alloys which can render better hardness than aluminum anodic oxide (AAO) films prepared by conventional anodizing method in acidic solutions. In this presentation, some basic nature of PEO film formation and growth process on Al alloys will be presented based on the experimental results obtained and discussed in view of dielectric breakdown and reformation and the role of various anions in film breakdown and reformation of PEO films.

  • PDF

Plasma electrolytic processing for polishing of stainless steel surfaces

  • Van, Thanh Dang;Kim, Sung-W.;Kim, Jong-R.;Kim, Sang-G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.137-137
    • /
    • 2008
  • This paper presents the ability of plasma electrolytic polishing technology to polish surface of stainless steel materials. The results show that the surface of its can be polished clearly using potentiostatic regimes in various concentration of $(NH_4)_2SO_4$ solution that had been warmed to a certain initial temperature. The equipment and deposition produces for polishing process are described and the effect of processing parameters on the characterizations polishedsamples has been has been investigated.

  • PDF

Mirror Surface Grinding Characteristics and Mechanism of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 경면연삭가공 특성)

  • 박규열;이대길;중천위웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2514-2522
    • /
    • 1994
  • The mirror surface grinding of carbon fiber reinforced plastics(CFRP) was realized by using the metal bonded super-abrasive micro grain wheel with electrolytic in-process dressing(ELID). The maximum surface roughness $R_{max}$ of CFRP which was obtained with #6,000 wheel, was 0.65 $\mu{m}$, which was rougher surface finish compared to those of hard and brittle materials with the same mesh number wheel with ELID. The grinding performance was much dependent on the grinding direction and the best surface roughness was obtained at $90^{\circ}C$ grinding with fiber direction. The spark-out effect on the surface improvement was significant when smaller mesh number grinding wheels were used. From the surface observations of CFRP with scanning electron microscope(SEM) and Auger electron spectroscopy(AES), it was found that the mirror surface grinding of CFRP was generated by the homogenization due to carbonization of the ground surface and smearing of chips composed of the carbon fiber and carbonized epoxy resin into the ground surface.

Analysis of Surface Characteristics in the $Si_3N_4$/h-BN Ceramic by IED Ultra-Precision Lapping (IED 초정밀 래핑을 통한 $Si_3N_4$/h-BN의 표면특성 분석)

  • Hwang, Sung-Chul;Lee, Jung-Taik;Lee, Eun-Sang;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.47-54
    • /
    • 2008
  • Recently, application of ceramics has increased gradually due to excellent mechanical properties. Si3n4-BN ceramic which is one of ceramics is very hard and has superior resistance against volatile temperature and wear. However, extremely high hardness of the $Si_3N_4-BN$ ceramic makes conventional machining very difficult. Therefore, the use of machinable ceramic has been in a poor because of difficult industrial processes in spite of many advantages. And so new technology being called IED(In-process electrolytic dressing) was introduced to solve this problem. The aim of this study is to determine the machining characteristics in terms of pressurized weight to the workpiece and the influence with h-BN content using IED lapping system. Also, Acoustic Emission (AE) is used for the monitoring of surface characteristics.

Influence of the Electrical Parameters on the Fabrication of Oxide Layers on the Surface of Al-1050 by a Plasma Electrolytic Process (플라즈마 전해 산화법에 의한 Al-1050 표면상의 산화막 제조에 미치는 전기적 변수의 영향)

  • Nam, Kyung-Su;Song, Jeong-Hwan;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.498-504
    • /
    • 2012
  • Oxide layers were prepared by an environmentally friendly plasma electrolytic oxidation (PEO) process on an Al-1050 substrate. The electrolyte for PEO was an alkali-based solution with $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The influence of the electrical parameters on the phase composition, microstructure and properties of the oxide layers formed by PEO were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The voltage-time responses were recorded during various PEO processes. The oxides are composed of two layers and are mainly made of ${\alpha}$-alumina, ${\gamma}$-alumina and mullite phases. The proportion of each phase depends on various electrical parameters. It was found that the surface of the oxides produced at a higher current density and Ia/Ic ratio shows a more homogeneous morphology than those produced with the electrical parameters of a lower current density and lower Ia/Ic ratio. Also, the oxide layers formed at a higher current density and higher Ia/Ic ratio show high micro-hardness levels.

Removal of Cu impurities in LiBr solution using cyclone electrowinning method (싸이클론 전해환원방법을 이용한 LiBr 용액내의 Cu 불순물 제거에 관한 연구)

  • Da Jung Park;Kyu Hwan Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • The LiBr aqueous solution, which is the absorption liquid of absorption refrigerator, must be replaced periodically because the concentration of impurities such as Cu2+, Fe2+, Ca2+, etc., increases due to corrosion of the tubes as the period of use increases, and the refrigeration efficiency decreases significantly. In order to reuse the waste absorption liquid, flocculation-precipitation method is mainly applied to precipitate the impurities, which requires hundreds of times the concentration of impurities and generates additional waste. In this study, a process for removing Cu ion impurities from cyclone electrolyzer by electrolytic reduction is presented in a small-scale facility without additional waste. It was confirmed that Cu ion impurities can be removed down to 1 ppm by electrolytic reduction process, and to further improve the removal rate, the mass transfer rate was increased by using a cyclone electrolyzer. The removal rate of Cu ions increased with the increase of flow rate and current density, and it was confirmed that Cu was removed at a rate of 1.48 ppm/h under the condition of 330 mL/sec and 2.5 mA/cm2.

Effects of Magnitic Field on Electrochemical Polishing Process (자기장이 전해복합연마공정에 미치는 영향)

  • 김정두;최민석;김동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.108-112
    • /
    • 1994
  • The paper describes the effects of magnetic field on the electrochemical polishing process in the view of ionic in the electrolyte. Theoretical background was suggested how magnetic field increases the material removal efficiency and surface finishing ability Magnetic field changes the jonic movement in the electrolyte from linear motion to curved or complex oscillating one, thus increases the electrolytic current density and, as the results, the finishing efficiency.

  • PDF