• 제목/요약/키워드: Electrolytic damage

검색결과 18건 처리시간 0.028초

5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구 (Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater)

  • 김영복;김성종
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

가전용 커패시터의 소손원인 규명 및 발열 메커니즘 해석 (Examination of the Cause of Damage to Capacitors for Home Appliances and Analysis of the Heat Generation Mechanism)

  • 박형기;최충석
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.13-19
    • /
    • 2011
  • The purpose of this study is to examine the cause of damage to electrolytic capacitors and to present the heat generation mechanism in order to prevent the occurrence of similar problems. From the analysis results of electrolytic capacitors collected from accident sites, the fire causing area can be limited to the primary power supply for the initial accident. From the tests performed by applying overvoltage, surge, etc., it is thought that the fuse, varistor, etc., are not directly related to the accidents that occurred. The analysis of the characteristics using a switching regulator showed that the charge and discharge characteristics fell short of standard values. In addition, it is thought that heated electrolytic capacitors caused thermal stress to nearby resistances, elements, etc. It can be seen that the heat generation is governed by the over-ripple current, application of AC overvoltage, surge input, internal temperature increase, defective airtightness, etc. Therefore, when designing an electrolytic capacitor, it is necessary to comprehensively consider the correct polarity arrangement, appropriate voltage application, correct connection of equivalent series resistance(ESR) and equivalent series inductance(SEL), rapid charge and discharge control, sufficient margin of dielectric tangent, etc.

전극에 따른 전해 이온수 발생장치의 특성 (The Characterization of Electrolytic Ion Water Generator by Electrode)

  • 한병조;이연;류봉조;구경완
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1786-1791
    • /
    • 2016
  • The damage has occurred inside the semiconductor pattern When using conventional wet station for semiconductor. It was used for electrolytic ion water generator in order to prevent damage to the semiconductor pattern. It was designed and developed a flow path electrode and the mesh electrode to check the efficiency of the electrode. And It confirmed the expected results through the simulation of the flow path. and ORP were measured in accordance with the current and voltage of mesh electrode and flow paht electrodes. Flow path electrode 22A is 3V, up to pH 9.8, the value of ORP-558mV was measured and the mesh electrode was measured up to pH 9.8, ORP -350mV.

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

직류 접지극의 전식보호 방법 연구 (Research on Protection Method for Ground Electrode of DC Systems from Corrosion)

  • 정우용;김효성
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.90-95
    • /
    • 2021
  • In contrast to AC grounding systems, the ground electrode in DC systems continuously maintains positive or negative polarity. Ground electrodes with (+) polarity proceeds by oxidation reaction. Thus, the DC current should flow opposite to the polarity of the leakage current flowing through the (+) ground electrode by using a compensation electrode, and the current flowing through the (+) ground electrode can be 0A. However, according to protecting the (+) ground electrode, the compensation electrode corrodes and gets damaged. Thus, the (+) ground electrode must be protected from corrosion, and the service life of the compensation electrode must be extended. As an alternative, the average value of the current flowing through the compensation electrode should be equal with the value of the leakage current flowing through the (+) ground electrode by using the square waveform. Throughout the experiment, the degree of corrosion on the compensation electrode is analyzed by the frequency of the compensation electrode for a certain time. In the experiment, the frequencies of the square waveform are considered for 0.1, 1, 10, 20, 50, 100 Hz, and 1 kHz. Through experiments and analysis, the optimal frequency for reducing the electrolytic damage of the (+) electrode and compensation electrode in an LVDC grounding environment is determined.

UNS S31603에 대하여 완전요인설계를 이용한 전해연마조건에 따른 표면 거칠기의 유효인자 산출 (Identifying Factors Affecting Surface Roughness with Electropolishing Condition Using Full Factorial Design for UNS S31603)

  • 황현규;김성종
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.314-324
    • /
    • 2022
  • The objective of this investigation was to indentify major factors affecting surface roughness among various parameters of electropolishing process using the design of an experiment method (full factorial design) for UNS S31603. Factors selected included electrolyte composition ratio, applied current density, and electrolytic polishing time. They were compared through analysis of variance (ANOVA). Results of ANOVA revealed that all parameters could affect surface roughness, with the influence of electrolyte composition ratio being the highest. As a result of surface analysis after electropolishing, the specimen with the deepest surface damage was about 35 times greater than the condition with the smallest surface damage. The largest value of surface roughness after electropolishing was higher than that of mechanical polishing due to excessive processing. On the other hand, the smallest value of surface roughness after electropolishing was 0.159 ㎛, which was improved by more than 80% compared to the previous mechanical polishing. Taken all results together, it is the most appropriate to perform electrolytic polishing with a sulfuric acid and phosphoric acid ratio of 3:7, an applied current density of 300 mA/cm2, and anelectrolytic polishing time of 5 minutes.

지하철 직류 급전시스템의 표유전류 실태 분석(I) 서울 지역 (Analysis of the Stray Current Conditions in Subway DC Electrification System (I) Seoul Metropolitan Area)

  • 하윤철;하태현;배정효;김대경;이현구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1364-1366
    • /
    • 2004
  • When an underground pipeline runs parallel with DC-powered railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns. Perforation due to the electrolytic corrosion may bring about large-scale accidents even cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Seoul. In this paper, we report the analysis of the stray current conditions in Seoul subway DC electrification system.

  • PDF

플라즈마 전해 산화 처리된 해양환경용 Al 합금의 캐비테이션 손상 특성 (Cavitation damage characteristics of plasma electrolytic oxidation coatings prepared on marine grade Al alloy)

  • 이정형;김용환;김연주;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.132.2-132.2
    • /
    • 2017
  • 플라즈마 전해 산화(Plasma Electrolytic Oxidation, PEO)는 Al, Ti, Mg 합금과 같은 경량 금속소재에 대한 표면처리기술로서 주목을 받고 있다. PEO 처리에 의해 표면에 치밀하게 형성되는 세라믹 산화층은 우수한 내식성, 내마모성을 보유하기 때문에, 이와 같은 특성이 요구되는 분야에 적용하기 위한 연구가 활발하다. 특히 PEO 세라믹 코팅층의 응착마모(adhesive wear)와 절삭마모(abrasive wear)에 관한 연구는 상당부분 이루어지고 있으나, 캐비테이션 침식과 같은 침식마모(erosive wear) 특성에 관한 연구는 부족한 실정이다. 본 연구에서는 알루미늄 합금 소지에 제작된 PEO 코팅층의 캐비테이션 손상 특성을 고찰하였으며, 전해액 조성이 PEO 코팅층의 미세조직과 캐비테이션 손상 특성에 미치는 영향을 살펴보았다. PEO 처리를 위해 사용된 소재는 상용 5083-O합금 판재로서 $2cm{\times}2cm$로 절단하여, 에머리페이퍼로 1000번까지 연마하여 사용하였다. 사용된 전해액은 증류수에 KOH(1 g/L)을 base로 하여 $Na_2SiO_3$(2 g/L)의 첨가유무를 변수로 하였다. 시편을 양극으로 하고 STS304를 음극으로 하여 각각 DC 전원 공급기의 +극과 -극에 연결하였으며, 정전류 조건에서 30분간 $0.1A/cm^2$의 전류밀도를 인가하였다. PEO 처리후 시편은 SEM, EDS, XRD를 이용하여 표면 특성 평가를 실시하였다. PEO코팅층의 캐비테이션 특성 평가는 초음파 진동식 캐비테이션 발생 장치를 이용하였으며, 캐비테이션 실험 후 시간에 따른 표면 거칠기의 변화 거동을 분석하였다.

  • PDF

3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발 (Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM)

  • 김재원;임부택;박흥배;장현영
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.

3D FEM 모델링을 이용한 원전 매설배관의 방식성능 평가 및 결함탐지능 분석 (Evaluation of Corrosion Protection Efficiency and Analysis of Damage Detectability in Buried Pipes of a Nuclear Power Plant with 3D FEM)

  • 장현영;박흥배;김기태;김영식;장윤영
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.61-67
    • /
    • 2015
  • 3D FEM modeling based on 3D CAD data has been performed to evaluate the efficiency of CP system in a real operating nuclear power plant. The results of it successfully produced sophisticated profiles of electrolytic potential and current distributions in the soil of an interested area. This technology is expected to be a breakthrough for detection technology of damages on buried pipes when it comes into combining with a brand of area potential earth current (APEC) and ground penetrated radar (GPR) technologies. 2D current distribution and 2D current vectors on the earth surface from the APEC survey will be used as boundary conditions with exact 3D geometry data resulting in visualization of locations and extents of corrosion damages on the buried pipes in nuclear power plants.