• Title/Summary/Keyword: Electrokintic soil remediation

Search Result 3, Processing Time 0.019 seconds

Optimum Remediation Conditions of Vertical Electrokinetic-Flushing Equipment to Decontaminate a Radioactive Soil (방사성토양 복원을 위한 수직형 동전기-세정장치의 최적제염조건 도출)

  • Kim, Gye-Nam;Yang, Byeong-Il;Moon, Jei-Kwon;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.153-160
    • /
    • 2009
  • Vertical electrokintic-flushing remediation equipment was developed for the remediation of a radioactive soil near nuclear facilities. An optimum reagent was selected to decontaminate the radioactive soil near nuclear facilities with the developed vertical electrokintic-flushing remediation equipment, and the optimum remediation conditions were established to obtain a higher remediation efficiency. Namely, acetic acid was selected as an optimum reagent due to its higher remediation efficiency. When the electrokinetic remediation and the electrokinetic-flushing remediation results were compared, the removal efficiency of 4.6% and the soil waste solution volume of 1.5 times were increased in the electrokinetic remediation. When the potential gradient within an electrokinetic soil cell was increased by two times (4.0 V/cm), the removal efficiencies of $Co^{2+}$ and $Cs^+$ were increased by about 4.3%($Co^{2+}$ : 98.9%, $Cs^+$ : 96.7%). Also, when the reagent concentration was increased from 0.01M to 0.05M, the removal efficiency of $Co^{2+}$ was increased but that of $Cs^+$ was decreased. Therefore, the optimum remediation conditions were that the acetic concentration was $0.01M{\sim}0.05M$, the potential gredient was 4 V/cm, the injection of reagent 2.4ml/g, and the remediation period was 20days.

  • PDF

Feasibility Study on Acid-enhanced Electrokintic Remediation of Zn and Ni-contaminated Soil (Zn와 Ni로 오염된 토양의 산을 이용한 전처리 및 산순환 동전기 정화의 타당성 연구)

  • Park, Sung-Woo;Cho, Jung-Min;Ryu, Byung-Gon;Kim, Kyung-Jo;Baek, Ki-Tae;Yang, Jung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.17-22
    • /
    • 2008
  • The feasibility of acid-enhanced electrokinetic remediation on zinc and nickel-contaminated soil was investigated in the laboratory. Simple extraction efficiency using 1M HCl was 24% for Zn and 9% for Ni, as a result, the acid washing is not effective to remove Zn and Ni from the soil. The effiencey of normal electrokinetic treatment during 28 days was less than simple soil washing. Catholyte circulation with a strong acid enhanced dramatically the removal of Zn and Ni and pretreatment of soil with acid increased more the removal. Based on the result, acid-enhanced electrokinetic remediation is effective to remove Zn and Ni from the contaminated soil.

EDTA-Enhanced Electrokinetic Removal of Cu and Zn from Contaminated Sandy Soil (동전기 기술과 세척제 EDTA를 이용한 모래 토양으로부터 구리 및 아연의 제거)

  • Lee, Hyo-Sang;Hong, Soon-Myong;Ko, Sung-Hwan;Lee, Ki-Say
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • EDTA-enhanced electrokinetic removal of copper and zinc from contaminated sandy soil was carried out. In desorption equilibrium tests, the required mass ratio of EDTA to metal was 10:1 to obtain over 90% of desorption from soil. The removal of heavy metals with chelating agent EDTA below pH 3 was limited because of EDTA precipitation. In electrokinetic experiments, the pH control at anode chamber was essential and 38% Cu and 56% Zn were removed under 30 mA for 1.5 days. Heavy metal removal was greatly improved by controlling anode and soil pH with circulation of anolyte with NaOH solution, in which >50% heavy metal was removed for 4 days and >70% for 9 days.

  • PDF