• Title/Summary/Keyword: Electrokinetic remediation

Search Result 110, Processing Time 0.024 seconds

Electrokinetic Sedimentation and Remediation of River Dredged Contaminated Soil (오염된 하천준설토의 동전기적 침강 및 오염물질 제거)

  • 정하익;오인규;진현식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.559-562
    • /
    • 2001
  • There are many engineering applications that demand settling acceleration and volume reduction of fine solid suspensions. It is a matter to Improve the dredged soil thickening as well as the dewatering characteristic, because settling acceleration of dredged soil decreases the scale of industrial process and volume reduction of dredged soil decreases environmetal challenge to the disposal sites. Direct electric current induces the movement of fine solid particles suspended in water. Upon formation of a soil structure, the current further induces the movement of water and contaminant in the soil skeleton. Theses phenomena are known as electrokinetics. This study investigates the viability, of using the technique of electrokinetic dewatering to river dredged soil for settling acceleration and volume reduction. The aspect, such as sedimentation velocity, final volume and current variation are discussed.

  • PDF

Electrochemical Characteristics of Fine Soils in the Application of Electrokinetic Remediation (동전기력 복원공정 적용에 따른 세립토양의 전기화학적 특성 변화)

  • 고석오
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.85-94
    • /
    • 2002
  • Overall objective of this study was to evaluate the electrochemical characteristics of fine soils during the electrokinetic(EK) remediation. Zeta potential of kaolinite as a function of solution pH and surfactant concentration was investigated to make a relationship with electroosmotic flow direction and rate. During the EK experiments, pH of pore solution, electroosmotic permeability($k_e$), electric conductivity($\delta_e$) and voltage distribution was measured, respectively, The point of zero charge(PZC) of kaolinite was estimated to be about 4.2 and the zeta potential of kaolinite above PZC was more negative as solution pH increased. Sorption of surfactants on the kaolinite altered the zeta potential of kaolinite. resulting from the variation of electrochemical characteristics of kaolinite surface. hs the EK experiment progressed, low pH was predominant over most of the kaolinite specimen and thus resulted in very low mass and charge flow. The $k_e$ and $\delta_e$ was also affected by the variation of voltage drop across the EK column with time. Results from this study implied that zeta potential of kaolinite affected by the pH variation of pore solution and voltage distribution in soil column played important role in the determination of mass and charge flow during EK process. It was also suggested that pH adjustment or addition of suitable sorbates could alter the electrochemical characteristics of soil surface and thus maintain high mass and charge flow rate with time.

Removal of Cr, Pb and Cd from Reservoir Sediment by Electrokinetic Technique (동전기를 이용한 유수지 오염 퇴적토내 Cd, Pb 및 Cr제거)

  • Shin, Hyun-Moo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.68-77
    • /
    • 2009
  • For the reservoir sediment highly contaminated with total Cr, Pb, and Cd, the applicability of electrokinetic remediation method was evaluated. Also, BCR sequential extraction method was adopted to compare the heavy metal speciation in between before and after electrokinetic reaction that is operated under constant current condition for the sediment. After reaction, total Cr and Pb moved toward the direction of anode, while Cd tended to cathode and stayed highest in the midst of sediment specimen. From the BCR sequential extraction analysis, it was known that for total Cr and Pb the residual fraction that showed high fraction before reaction decreased and changed to the oxidation fraction. On the other hand, for Cd the fraction of exchangeable/carbonate that dominated most fractions before reaction changed to the residual and oxidation fractions.

Emerging Remediation Technologies for the Contaminated Soil/Groundwater in the Metal Mining Areas (금속광산지역 오염 토양/지하수의 복원기술 동향)

  • 김경웅
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.99-106
    • /
    • 2004
  • Pollution reduction and/or control technology becomes one of the pressing post-semiconductor research field to lead an advanced industrial structure. Soil/groundwater remediation techniques may act as a core technology which will create many demands on pollution reduction areas. A plenty numbers of abandoned metal mines were left without any remediation action in Korea, and it may be potential sources of heavy metal and As contamination in the ecosystem. In order to bring this soil contamination to a settlement, the emerging soil/groundwater remediation techniques should be introduced. Main research topics in the United States and Europe move towards the clean remediation technology without any secondary impact and the feasible application of developing technique into the field scale study. With these advantages, several soil/groundwater techniques such as electrokinetic soil processing, permeable reactive barrier, stabilization/solidification, biosorption, soil flushing with biosurfactant, bioleaching and phytoremediation will be summarized in this paper.

A Study on The Assessment of Treatment Technologies for Efficient Remediation of Radioactively-Contaminated Soil (방사성 오염 토양의 효율적 복원을 위한 처리기술 평가 연구)

  • Song, Jong Soon;Shin, Seung Su;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Soil can be contaminated by radioactive materials due to nuclide leakage following unexpected situations during the decommissioning of a nuclear power plant. Soil decontamination is necessary if contaminated land is to be reused for housing or industry. The present study classifies various soil remediation technologies into biological, physics/chemical and thermal treatment and analyzes their principles and treatment materials. Among these methods, this study selects technologies and categorizes the economics, applicability and technical characteristics of each technology into three levels of high, medium and low by weighting the various factors. Based on this analysis, the most applicable soil decontamination technology was identified.

A New Circulation Method for Electrokinetic Remediation of Soil Contaminated with Lead (새로운 순환방식을 적용한 동전기 정화기술에 의한 오염토양내의 납제거)

  • 이현호;백기태;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • A new method has been proposed and developed that solves the problem of decreasing electroosmotic flow rate by excess $H^{+}$ and precipitation of heavy metal by $OH^{-}$. An electrolytic solution was circulated between the anode and cathode compartments that enabled the pH at the anode and cathode to be controlled. The change of the soil pH by circulation systems affects the operation time, by lowering the rate of increase of the electric potential gradient, and the removal efficiency of heavy metals, by affecting the soil pH. Since there was no effluent from the cathode compartment in circulation system, there was no need to treat the wastewater after the experiment, which resulted in the reduction of influent electrolyte volume.

동전기-생물학적복원기술과 계면활성제를 이용한 phenanthrene 오염토양의 정화

  • 김상준;박지연;이유진;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.186-190
    • /
    • 2004
  • The electrokinetic bioremediation employing electrolyte circulation method was carried out for the cleanup of phenanthrene-contaminated kaolinite, and microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y. The electrolyte circulation method supplied ionic nutrientsand the microorganism into soil, and inhibited the significant pH change of soil by increasing the soil buffering capacity by providing phosphate buffer compounds. When the remediation process was conducted without surfactant, the removal efficiency of phenanthrene, at the initial concentration of 200 ppm, was 69% for only 7 days. Higher microbial population and lower phenanthrene concentration were observed in the anode and middle regions of soil specimen than in the cathode region. The higher density of microorganism was because the microbial movement was in the direction of the anode part due to the negative surface charge. When Triton X-100 and APG of 20 g/1 were used to improve the bioavailability of phenanthrene strongly adsorbed onto soil surface, about 90 and 39% of phenanthrene removal were obtained. Consequently, it was confirmed that the microorganism preferred APC to phenanthrene as carbon source and so the removal efficiency with APG decreased less than that without APG.

  • PDF

Cesium Removal from Soil Contaminated with Radioactivity Using Electrokinetic Method (동전기적방법을 이용한 방사능오염토양 내의 세슘 제거)

  • 김계남;원휘준;김민길;박진호;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.696-700
    • /
    • 2003
  • $H_2SO_4$ and citric acid had higher extraction efficiency of $^{137}Cs$ from soil than the other chemicals. Thus, $H_2SO_4$and citric acid were used as additives on remediation experiment by electrokinetic method to increase removal efficiency of $^{137}Cs$ from the radioactive soil being stored during a long time. An average velocity of effluent discharged from experimental column $2.0{\times}10^{-2}$/cm/min and a volume of the discharged soil wastewater for 10 days is 3.6 Pore Volume. The 54% of a total of $^{137}Cs$ in the column was decontaminated for 10 days. Furthermore, the predicted values of residual concentration by the developed model were quite similar to those obtained from experiments.

  • PDF

Removal of Phenanthrene by Electrokinetic-Fenton Process in a 2-dimensional Soil System (동전기-펜턴 공정을 이용한 2차원 토양 정화장치에서의 phenanthrene 제거)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.11-17
    • /
    • 2005
  • Characteristics of phenanthrene removal in the Electrokinetic (EK)-Fenton process were investigated in a 2-dimensional test cell in a viewpoint of the effect of gravity and electrosmotic flow (EOF). When the constant voltage of 100 V was applied to this system, the current decreased from 1,000 to 290 mA after 28 days, because soil resistance increased due to the exhaustion of ions in soil by electroosmosis and electromigration. Accumulated EOF in two cathode reservoirs was 10.3 L and the EOF rate was kept constant for 28 days. At the end of operation, the concentration of phenanthrene was observed to be very low near the anode and increased in the cathode region because hydrogen peroxide was supplied from anode to cathode region following the direction of EOP. Additionally, the concentration of phenanthrene decreased at the bottom of the test cell because the electrolyte solution containing hydrogen peroxide was largely transported toward the bottom due to a low capillary action in the soil with high porosity. Average removal efficiency of phenanthrene by EK-Fenton process was 81.4% for 28 days. In-situ EK-Fenton process would overcome the limitations of conventional remediation technologies and effectively remediate the contaminated sites.

Removal of Cesium and Cobalt within Soil around TRIGA Reactor by Electrokinetic method (동전기적방법을 이용한 TRIGA 연구로 주변 토양내의 세습과 코발트 제거)

  • 김계남;원희준;정종헌;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.13-23
    • /
    • 2004
  • The characteristics of cesium and cobalt removal from soil around the TRIGA reactor using the electrokinetic method were analyzed and a device to restrain the pH increase in the soil column was suggested. When a NaCl solution was used as the electrolyte to raise the electric field strength, a precipitate was formed in the cathode in the soil column, resulting in a low removal efficiency. Thus, an acetate buffer solution (compound solution of $CH_3COONa$ and $CH_3COOH$) was injected into the soil column and acetic acid was periodically infected into the cathode reservoir to restrain any pH increase. Many $Cs^{2+}$ and $Co^{2+}$ ions were transferred by electromigration rather than electroosmosis during the initial remediation period, and no precipitate was formed in the soil column. 96% of the total amount of cesium in the soil column was removed after 5.9 days, while 94% of the total amount of cobalt was removed. Furthermore, the residual concentrations predicted by the developed model were similar to those obtained by experiment.

  • PDF