• Title/Summary/Keyword: Electrokinetic

Search Result 262, Processing Time 0.041 seconds

The Characteristics of pH Variations and Lead transport during Electrokinetic Remediation of soil Contaminated by Heavy Metal (중금속 오염토의 Electrokinetic 정화 처리시 pH 발현과 납 제거의 전극 간 특성)

  • 한상재;김수삼
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.13-23
    • /
    • 2001
  • In this study, the characteristics of pH variations and contaminant distribution in soil are investigated during electrokinetic treatment for the purpose of restoring contaminated soil with heavy metal. For these objects, laboratory test for the kaolin contaminated by lead was performed. During electrokinetic treatment, lead was transported from anode to cathode. And 75% of lead removed within 80% region of the specimen. Most lead, however, that transported from anode to cathode precipitated in the vicinity of cathode compartment, thus the amount of lead removed by electroosmosis was little. Electrokinetic treatment satisfied regulation criteria of Korean Soil Environment Conservation Law within almost region of the specimen. But enhancement methods can be regarded as inevitable requisite for the cathode region.

  • PDF

Modeling of Electrical and Chemical Characteristics During the Electro]kinetic Remediation of Contaminated Soil by Heavy Metal (중금속 오염토의 Electrokinetic 정화시 토체의 전기화학적 특성의 모델링)

  • 한상재;김수삼;조용실
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • During the electrokinetic remediation, direct current applied to a soil-water-electrolyte system derives the variations of fluid transport phenomena in soil-water system and soil-water interface characteristics. Therefore, these variations affect the electrokinetic reaction. In this study, lab-scale electrokinetic remediation tests were performed to characterize the electrical and chemical parameters variation in soil. During the test, voltage gradient, electrical current, zeta potential and pH variations were measured. On the basis of experimental results, computer modeling techniques predicting the variations of these parameters are suggested.

Fundamental Studies on the Characteristics of the Surface Electrokinetic Behavior of Particulate Matter as an Extensive Property (입자성 물질의 크기성질로서의 표면 전기적 특성 규명에 대한 기초연구)

  • O, Se-Jin;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.581-586
    • /
    • 2010
  • Generally, electrokinetic potential has been considered as an intensive property. In other words, electrokinetic potential is not affected by the amount of particulate matter. Montmorillonite, one of essential inorganic matter, was chosen to measure electrokinetic potential. The result of electrokinetic potential measuring experiment showed that the value observed to decrease as the amount of montmorillonite clay increased. This is due to the fact that total ions that adsorbed per unit mass were decreased as the amount of montmorillonite was increased. As a result, electrokinetic potential is considered as an extensive property. By using these results, total interaction energy of suspension was also checked, and revealed that total interaction energy was decreased as the amount of montmorillonite increased.

동전기 정화 처리 효율 향상과 후처리 겸용 전극부(EPE) 개발

  • 김강호;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.275-278
    • /
    • 2002
  • In this study, to increase removal efficiency of traditional electrokinetic treatment and to reduce contaminant load of wastewater that discharged through cathode compartment, enhanced electrode compartments were investigated. Hydroxide precipitation near the cathode electrode that encounter during traditional electrokinetic treatment were prevented by enhanced electrokinetic remediation test with newly invented electrode compartment. And heavy metal concentration in wastewater showed 0 ppm thus, additive post-treatment cost were not needed.

  • PDF

A study on electric current variation characteristics during Electrokinetic remediation of kaolinite contaminated by Pb (납으로 오염된 카올린의 Electrokinetic 정화기법 적용시 전류변화 특성에 관한 연구)

  • 김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.302-306
    • /
    • 2000
  • In case of applying electrokinetic remediation, magnitude of electric current is one of major factors for estimation of contaminant transport. In practice, electric current provide determination of electric conductivity based on specimen resistance. Electric current variation is produced during Electrokinetic remediation test. Electric current is decreased by expotential function according to time in condition of constant voltage. This can be interpreted as precipitation effect by OH$^{-10}$ generation in a cathode.

  • PDF

The Influence of Temperature on the Surface Electrokinetic Features of Particulate Matters in Aqueous Environment (수중입자의 표면 전기적 특성에 미치는 온도의 영향)

  • O, Sejin;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.525-531
    • /
    • 2010
  • To figure out the importance of temperature on electrochemical properties in water environment, calcium carbonate, one of important substances in water chemistry, was chosen to make suspensions. The result of electrokinetic potential of calcium carbonate suspensions revealed that it tended to increase as temperature increased. In addition, electrokinetic potential was negatively increased as suspensions became more basic. Its isoelectric point was ca. 7 regardless of temperature. The adsorption of hydrogen ions on calcium carbonate particles followed endothermic reaction. This result was verified by continuously measuring pH as adding HCl solution in calcium carbonate suspension. It explained that suspensions' potential was determined by DLVO theory which calculated total interaction energy between particles. Suspensions' total interaction energy was proportional to the value of electrokinetic potential. Furthermore, total interaction energy between particles increased as suspensions' temperature was increased.

pH Variation In Soils Considering Buffer Capacity during Electrokinetic Extraction (Electrokinetic정화시 토질의 완충능을 고려한 시료내의 pH변화)

  • 오승록;한상재;김수삼;조성호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.585-590
    • /
    • 2001
  • Physicochemical phenomena in soils are dependent upon pH when using electrokinetic extraction for the contaminants removal especially for heavy metals. pH variation in soils is affected on H$\^$+/ and OH ̄ ions produced by electrolysis reaction and buffer capacity of soil. High amount of heavy metals are retained in the soils if the soil buffer capacity remains high enough to resist a change in pH. Therefore, accurate pH estimation of soil is important in the application of electrokinetic mechanism for decontamination and understanding of subsurface physicochemical characteristics is also required as well as considering buffer capacity for the enhanced methods application. For these, buffer capacity and pH distribution were measured for the four soils, and also compared with modeling results. The results of buffer modeling were good agreement with experimental data. It is showed that four soils were effected by buffer capacity

  • PDF

Electrokinetic Ions Injection into Kaolinite and Sand for Bioremediation (카올리나이트와 모레에서의 Bioremediation을 위한 Electrokinetic 이온 주입 특성)

  • 이호창;한상재;김수삼;오재일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.405-410
    • /
    • 2001
  • Bioremediation is a degradation process of existing organic contaminants in soils and groundwater by indigenous or inoculated microorganisms. This process can provide economical solution as well as safe and effective alternative in remediation technologies. However, it has been suggested that the rate of bioremediation process of organic contaminants by microorganisms can be limited by the concentration of nutrients and TEAs(Terminal Electron Accepters). In in-situ bioremediation, conventional pumping techniques have been used for supplying these additives. However, the injection of these additives is difficult in low permeable soils, and also hindered by preferential flow paths resulting from heterogeneities in high permeable ground. Therefore, the Injection of chemical additives is the most significant concern in in-situ bioremediation. Most recently, electrokinetic technique has been applied into the bioremediation and the injection characteristics under electrokinetics have not been examined in various soil types. Therefore, in this study, electrokinetic injection method is investigated in kaolinite and sand, and the concentration of ammonium(nutrients) and sulfate(TEAs) in soil is presented.

  • PDF

The Behavior of Anionic Surfactant Calfax 16L-35 in Electrokinetic Remediation

  • 양지원;이유진;박지연;김상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.306-309
    • /
    • 2003
  • Surfactant-enhanced electrokinetic (EK) remediation is an emerging technology that can effectively remove hydrocarbons from low-permeability soils. In this study, the electrokinetic remediation using Calfax 16L-35 was conducted for the removal of phenanthrene from kaolinite. An anionic surfactant Calfax 16L-35 was used at concentrations of 5, 15, and 30g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, low electrical potential gradient was maintained because of its ions. Even when the surfactant concentration was high, the removal efficiency of phenanthrene was low After the operation, most of surfactants were remained in soil and there were few in effluent. This phenomena was observed because the migration of Calfax 16L-35 from cathode to anode was predominant over electroosmotic flow which moved in opposite direction. Therefore, the anionic surfactant Calfax 16L-35 is considered to be improper in surfactant - enhanced electrokinetic remediation.

  • PDF

Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal (우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안)

  • Park, Hye-Min;Kim, Gye-Nam;Kim, Seung-Soo;Kim, Wan-Suk;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • The original pilot-scale electrokinetic equipment suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During the experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathode plate. The uranium removal capability of the original electrokinrtic equipment was almost exhausted because the cathode plate covered with metal oxides did not conduct electricity in the original electrokinetic equipment. Therefore, the original electrokinetic equipment was improved. After the remediation experience for 25 days using the improved electrokinetic remediation equipment, the removal efficiency of uranium from the soil was 96.8% and its residual uranium concentration was 0.81 Bq/g. When the initial uranium concentration of soil was about 50 Bq/g, the electrokinetic remediation time required to remediate the uranium concentration below clearance concentration of 1.0 Bq/g was about 34 days. When the initial uranium concentration of soil was about 75 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 42 days. When the initial uranium concentration of soil was about 100 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 49 days.