• 제목/요약/키워드: Electrohydrodynamic(EHD) Jet Printing

검색결과 8건 처리시간 0.024초

전기 수력학 인쇄공정을 이용한 실리콘 태양전지 전극용 Ni 잉크 제조 및 인쇄 공정 연구 (Electrohydrodynamic Continuous Jet Printing of Ni Ink for Crystalline Silicon Solar Cells)

  • 이영우;김지훈
    • 한국전기전자재료학회논문지
    • /
    • 제28권9호
    • /
    • pp.593-597
    • /
    • 2015
  • Ni ink for electrohydrodynamic (EHD) continuous jet printing has been developed by using Ni nanoparticles mixed with conhesiveness provider. EHD continuous jet printing was used in order to realize $20{\mu}m$ pattern width. Ink stability was investigated by using Turbi-scan which monitors agglomeration and precipitation of nanoparticles in the ink for three days. The Turbi-scan results showed that the formulated Ni ink had been stable for 3 days without any indication of precipitation across the entire ink. Antireflection coating (ARC) layer in crystalline solar cell wafers was removed by laser ablation technique leading to the formation of 84 grooves where the Ni ink was printed by EHD continuous jet printing. The printability and microstructure of EHD-jet-printed Ni lines were investigated by using optical and electron microscopes. 84 Ni lines with the width less than $20{\mu}m$ were successfully printed by one-time printing without any misalignment and fill the laser-ablated ARC grooves.

초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템 (Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning)

  • 노형래;고정국;권계시
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.873-877
    • /
    • 2013
  • 잉크젯 기술은 가정용 프린터에서부터 제조 도구로 확대 되었다. 최근 인쇄전자 분야에서 고해상도 인쇄가 요구되고 있다. 기존의 잉크젯 인쇄 패터닝 방식을 향상 시키기 위해 전기수력학잉크젯 기술이 최근 주목을 받고 있는데 노즐 직경보다 작은 방울을 토출할 수 있고 넓은 점도 범위와 재료를 사용할 수 있기 때문이다. 본 논문에서는 미세 패터닝을 위한 EHD 프린팅 시스템이다. 요구 적출형 프린팅에 의해 다양한 패턴을 인쇄하고 벡터와 레스터 프린팅 알고리즘을 개발하였다. 내경이 $8{\mu}m$ 인 노즐을 이용하여 $7{\mu}m$ 이하의 미세 전도성 선폭을 EHD 방식을 통해 만들 수 있다.

전류 측정을 이용한 수력학적 잉크젯 토출 모니터링 (Electrohydrodynamic Ink Jetting Monitoring based on Current Measurement)

  • 권계시;이대용
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.449-454
    • /
    • 2012
  • The method for spraying of liquid through an electrical filed has become a printing method since it can make very small droplet. To increase the reliability using the electro-hydrodynamic (EHD) jet printing, the jetting status needs to be monitored. Vision measurement techniques using high speed camera has been used to visualize the jet images. However, it requires image processing of a lot of images after image acquisitions. So, it is difficult to understand jet behavior such as jetting frequency, jet repeatability etc. In this work, a low cost electrical current measurement method was developed to measure electrical current from EHD jet printing. To verify the jetting monitoring capability of developed circuit, images from high speed camera were processed for comparison purpose.

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

압전 액츄에이터의 메니스커스 제어를 통한 온 디멘드(On-demand) 전기 수력학 프린팅 (On-demand electrohydrodynamic printing with meniscus controls by a piezoelectric actuator)

  • 김영재;김도형;황정호;김용준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.351-352
    • /
    • 2009
  • On-demand ejection of ultra-fine droplets that uses both electrohydrodynamic (EHD) force and mechanical actuation is presented. The liquid meniscus was controlled by a piezoelectric actuator and droplets were ejected by EHD force. Through these effects, it was possible to obtain a high operational jetting frequency of 5kHz with a short delay-time (about 50 us) when compared with existing on-demand EHD jetting methods, such as the pulsating jet mode (3-10 msec) and the pulsed-voltage cone-jet mode(3.6 msec). Also, we obtained ultra-fine droplets at a volume that was at the femto-liter level simultaneously. The jetting characteristics were examined for both hydrophobicity and hydrophilicity of the surface of a capillary.

  • PDF

고분자 폴리머 잉크를 이용한 고속 연속 전기 방사 프린팅 (High Speed and Continuous Electrospinning Printing Using Polymer Ink)

  • 장대해;권계시
    • 대한기계학회논문집B
    • /
    • 제39권4호
    • /
    • pp.379-384
    • /
    • 2015
  • 최근 전기방사를 이용한 프린팅이 미세 패터닝 분야에 응용이 되고 있다. 전기방사를 이용한 패터닝은 연속 프린팅 방식으로 기존의 요구적출형 방식에 비해 패터닝 속도가 빠르다는 장점이 있다. 안정적인 연속 프린팅을 위해서는 고분자의 폴리머를 프린팅하려고 하는 잉크에 혼합하는 것이 필요하다. 본 연구에서는 PEO 를 이러한 첨가 폴리머로 사용하였다. 이러한 폴리머의 첨가에 대한 잉크의 점도 및 Taylor cone 형성에 대해 미치는 영향을 조사하였다. 마지막으로 전기방사 프린팅의 예로서 실버 페이스트 잉크를 유리 기판 위에 패터닝하였다.

노즐 형상에 따른 전기수력학 프린팅의 실험적 연구 (The Experimental Study of EHD Printing for Different Nozzle Shapes)

  • 김지영;부닷귀엔;변도영
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.48-53
    • /
    • 2011
  • The shape of nozzle cross-section plays an important role in stabilizing electrospray jet. The angle of contact line is governed based on the famous Young-Laplace equation. Compared to a round nozzle that has a constant curvature along the orifice, the square nozzle has four square corner edges and four straight edges that hold the meniscus in a different manner and is of interest in this study. By utilizing both square and round capillary nozzle, we examine the effect of nozzle shape in electrohydrodynamic jetting. The ejections were recorded with a high speed camera and analyzed to examine the jetting repeatability based on dynamic movement of meniscus. The result suggests that if the corner edges are not sharp, then its effect on repeatability is also limited.

표면 전하 유무에 따른 대전된 미소액적의 충돌 현상 (The impact behaviors of electrified micro-droplet with existence and nonexistence of electrical charged for surface)

  • 이재현;김지훈;변도영
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.49-53
    • /
    • 2015
  • Recently, researches for droplet impact phenomena have been faced a new phase in the direction of studying the effect of complex external conditions (e.g. wettability, temperature, morphology, electric field, etc.) for depth understanding and precise controlling in various applications. Hence, here we investigated the electrified droplet impact phenomena, because there were few quantitative researches for electrified droplet impact when we considering many real applications such as electrospray, electrohydrodynamic (EHD) jet printing. To observe interaction effect of surface charge between substrate and droplet simultaneously, micro-droplets with various Reynolds number (Re) and Weber number (We) were dripped on super-hydrophobic surface with existence and nonexistence of electrical surface charge. It shows three kinds of impact behaviors, fully bouncing, partial bouncing, and splashing with different We. Also, charged droplet bounced higher on electrically charged surface than on non-charged surface. Additionally, transition regions of three impact behaviors were classified quantitatively with water hammer pressure value, which means instant pressure inside droplet at the impact moment.