• Title/Summary/Keyword: Electrodeposition Ni-$TiO_2$

Search Result 9, Processing Time 0.021 seconds

A study of the effects on the composition of the electrodeposited Ni-TiO2 composite with the ultrasonic treatment (전기도금법으로 만든 니켈-티타니아 복합체에서 초음파 처리가 도금층에 미치는 영향 연구)

  • Kim, Myong-Jin;Kim, Joung Soo;Kim, Dong Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.185-190
    • /
    • 2013
  • In the present study, $Ni-TiO_2$ composite coatings were electrodeposited in a sulfamate bath containing $TiO_2$ particles. The influence of the ultrasonic treatment on the co-deposition of $TiO_2$ particles in the coating and the hardness of the electrodeposited $Ni-TiO_2$ composite has been investigated. Three different ultrasonic treatments (pretreatment before the electrodeposition (pre-UT), pretreatment + applied during the electrodeposition (UT), and the electrodeposition without the ultrasonic treatment (w/o UT)) were performed. The $Ni-TiO_2$ composite coatings are characterized using scanning electron microscopy (SEM), image analyzer, and hardness tester. Comparison of results indicates that the volume fraction is more important factor than the agglomerated particle size in terms of the strength improvement, and the strength of the electrodeposited $Ni-TiO_2$ composite coatings is enhanced with pre-UT condition.

Inverse effect of Nickel modification on photoelectrochemical performance of TiNT/Ti photoanode (TiNT/Ti 광아노드의 광전기화학 특성에 미치는 Ni 금속의 영향)

  • Lee, JeongRan;Choi, HaeYoung;Shinde, Pravin S.;Go, GeunHo;Lee, WonJae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.100-100
    • /
    • 2011
  • Nanomaterial architecture with highly ordered, vertically oriented $TiO_2$ nanotube arrays shows a good promise for diverse technological applications. As inspired from the literature reports that Nickel modification can improve the photocatalytic activity of $TiO_2$, it was planned to coat Ni into the $TiO_2$ matrix. In this study, first $TiO_2$ nanotubes(TiNTs) were prepared by anodization (60V,3min) in HF-free aqueous electrolyte on ultrasonically cleaned polished titanium sheet substrates ($1{\times}7cm^2$). The typical thickness of the sintered TiNT ($500^{\circ}C$for10min) was ~1 micronas confirmed from the FESEM study. In the next part, as-anodized and sintered TiNT/Ti photoanodes were used to coat Ni by AC electrodeposition from aqueous 0.1M nickel sulphate solution. During AC electrodeposition, conditions such as 1V DC offset voltage, 9V amplitude (peak-to-peak) and 750 Hz frequency were fixed constant and the deposition time was varied as 0.5 min, 1 min, 2 min and 10 min. The photoelectrochemical performance of pristine and Ni modified TiNT/Ti photoanodes was measured in 1N NaOH electrolyte under 1 SUN illumination in the potential range of -1V and 1.2V versus Ag/AgCl reference electrode. The photocurrent performance of TiNT/Ti photoanode decreased upon Ni modification and the results were confirmed after repeated experiments. This suggests us that Ni modification inhibits the photoelectrochemical performance of $TiO_2$ nanotubes.

  • PDF

Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and Its Application for Electrochemical Capacitor

  • He, Huichao;Zhang, Yunhuai;Xiao, Peng;Yang, Yannan;Lou, Qing;Yang, Fei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1613-1616
    • /
    • 2012
  • Ni nanoparticles-$TiO_2$ nanotube arrays (Ni/$TiO_2NTs$) composites were prepared by pulsed electrodeposition method and subsequently characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The FESEM results showed that highly dispersed Ni nanoparticles were not only loaded on the top of the $TiO_2NTs$ but also within the tubular structure, and the particle size of Ni prepared at different current amplitude (100, 200 and 300 $mA{\cdot}cm^{-2}$) was in the range of 15 to 70 nm. The electrochemical studies indicated that Ni nanoparticles loaded on the highly ordered $TiO_2NTs$ are readily accessible for electrochemical reactions, which improve the efficiency of the Ni nanoparticles and $TiO_2NTs$. A maximum specific capacitance (27.3 $mF.cm^{-2}$) was obtained on the Ni/$TiO_2NTs$ composite electrode that prepared at a current of 200 $mA.cm^{-2}$, and the electrode also exhibited excellent electrochemical stability.

Mechanical and Tribological Properties of Pulse and Direct Current Electrodeposited Ni-TiO2 Nano Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.283-288
    • /
    • 2010
  • Ni-$TiO_2$ nano composite coatings were fabricated using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current (dc) electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. Pulse electrodeposited composite has exhibited enhancement of (111), (220), and (311) diffraction lines with an attenuation of (200) line. The results demonstrated that the microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as dc electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation in pulse plated composite. Coefficient of friction was also found to be lower in pulse plated composite coatings as compared to dc plated composite coatings.

Pulse electrodeposition and characterization of Ni-$TiO_2$ nano composite coatings

  • Cho, Sung-Hun;Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.153-153
    • /
    • 2011
  • Ni $TiO_2$ nano composite coatings were fabricated by using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. XRD patterns of pulse deposited composite coatings were found to be changed from preferred (100) orientation to the random mixed orientations. The results demonstrated that the Vickers microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as direct current electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation at pulse condition with reduced coefficient of friction. Nickel matrix grain size was also found to be lower in pulse plated composite coatings as compared to direct current electrodeposited composite coatings.

  • PDF

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Young;Cho, Byung-Won;Ju, Jeh-Beck;Yun, Kyung-Suk;Lee, Eung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.88-99
    • /
    • 1992
  • For the development of semiconducting photoelectrode to be more stable and efficient in the process of photoelectrolysis of the water, pure titanium rods were oxidized by anodic oxidation, furance oxidation and flame oxidation and used as electrodes. The Indium islands were formed by electrodeposition of "In" thin film on $TiO_2$ and Ti by electrodeposition. Also $A1_2O_3$ and NiO islands were coated on Ti by the electron-beam evaporation technique. The maximum photoelectrochemical conversion efficiency(${\eta}$) was 0.98% for flame oxidized electrode($1200^{\circ}C$ for 2min in air). Anodically oxidized electrodes have photoelectrochemical conversion efficiency of 0.14%. Furnace oxidized electrode($800^{\circ}C$ for 10min in air) has 0.57% of photoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The $In_2O_3$ coated $TiO_2$ exhibits 0.8% of photoelectrochemical efficiency but much higher value of ${\eta}$ was obtained with the Increase of applied blas voltage. However, $Al_2O_3$ or NiO coated $TiO_2$ shows much low value of ${\eta}$. The efficiency was dependent on the presence of the metallic interstitial compound $TiO_{0+x}$(x<0.33) at the metal-semiconductor interface and the thickness of the suboxide layer and the external rutile scale.

  • PDF

Electrodeposition of Nano TiO2 Powder Dispersed Nickel Composite Coating (전기도금법을 이용한 나노 산화티타늄 니켈 복합도금에 관한 연구)

  • Park, So-Yeon;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.65-69
    • /
    • 2012
  • Composite coating can be manufactured during the electroplating with the bath containing a suspension of particles: ceramic, polymer, nanopowders. Improvement of hardness, wear resistance, corrosion resistance and lubrication properties are well-known advantage of composite coating. In this study, nano $TiO_2$ powder dispersed Ni composite plating was investigated. The improvement of surface hardness and photo decomposition effects can be expected in this coating. Zeta potential was measured with pH. The effect of ultrasonication time and types of ultrasonicator were studied to minimize the agglomeration of $TiO_2$ nanopowders in the electrolyte. Optimum conditions for nano $TiO_2$ dispersed Ni composite coating were $40mA/cm^2$ of current density, pH 3.5, and $50^{\circ}C$. At these conditions, $TiO_2$ nanoparticles contents in the Ni deposit was 15-20 at.%.

Surface and Photolytic Characteristics of Ni-TiO2 Composite Layer Electro-Plated from Non-Aqueous Electrolyte (비수용액 전해질에서 전기도금한 니켈-TiO2 복합 도금층의 표면 및 광분해 특성 연구)

  • Jo, Il-Guk;Ji, Chang-Wook;Choi, Chul-Young;Kim, Young-Seok;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.240-244
    • /
    • 2008
  • Composite plating is a method of co-deposition of plating layer with metallic and/or non-metallic particles to improve the plating layer properties such as high corrosion resistance and photolysis of organic compounds. The properties of nickel-ceramic composite plating are significantly depend on the surface characteristics of co-deposited particles as well as the quantity in electrolyte. In this study, Ni-$TiO_2$ composite coating layer was produced by electrodeposition technique from non-aqueous eletrolyte and its surface characteristics as well as photolytic properties were investigated. The amounts of immobilized $TiO_2$ particles increased with increasing the initial $TiO_2$ particles contents in the bath. Samples electroplated with the current density of $0.5\;A/dm^2$ showed the significantly improved homogeneous $TiO_2$ particles distribution. The corrosion resistance of Ni-$TiO_2$ composite coating layer also improved with increaing the amounts of $TiO_2$ particles. Etched sample showed about 10% increased photolytic rate of organic matter compare to that of the non-etched.

A Study of pH, Duty Cycle, Agitation on the Property of Co-deposited TiO2 and Thermal Stability in the Electrodeposited Ni-TiO2 Composite (pH, duty cycle, 교반, 첨가제가 Ni-TiO2 전기도금 복합체의 TiO2 공석특성과 열적안정성에 미치는 영향 연구)

  • Kim, Myong-Jin;Kim, Joung-Soo;Kim, Dong-Jin;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.97-105
    • /
    • 2012
  • The effects of pH, types of applied current, agitation method and time, additive on the amount of co-deposited $TiO_2$ particles in the matrix were investigated. The deposition rates increased with increasing pH values, while the volume fraction of $TiO_2$ particles and the size of agglomerated $TiO_2$ particles in the composite decreased. The volume fraction of $TiO_2$ particles in the composite decreased when pulsed current of 50% duty cycle was used. And the size of agglomerated $TiO_2$ particles in the nickel matrix of pulsed current was smaller than that of DC current specimen. The volume fraction of $TiO_2$ particles in the matrix decreased with longer time by air agitation, but in case of using magnetic bar, volume fraction in the same range of time was relatively constant. The volume fraction of the electrodeposited Ni-$TiO_2$ composite in the solution containing 0.01 M Dimethylamine borane (DMAB) increased slightly with increasing agitation time regardless of agitation methods. Thermal stability of the electrodeposited Ni-$TiO_2$ composite increased with lower pH at the temperature range of $200{\sim}800^{\circ}C$, and the results showed that the amount of co-deposited $TiO_2$ relies more on the deposition rate than zetapotential of $TiO_2$ particles.