• Title/Summary/Keyword: Electrode interface

Search Result 494, Processing Time 0.032 seconds

Emitting Properties in Poly(3-hexylthiophene) by Heat treatment (열처리한 poly(3-hexylthiophene)의 발광특성)

  • Kim, Dae-Jung;Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.137-140
    • /
    • 2001
  • To improve structural properties and induce higher conductivity, we have annealed emitting layer. The temperature condition was investigated by various experiment. To observe the surface morphology of emitting layer, measured the AFM and the X -ray diffraction pattern of P3HT film is shown. It is move to slightly low angles and diffraction peaks also become much sharper. After annealing of emitting layer, EL intensity and Voltage-current-luminance curve is better as compared with untreated. But PL intensity was decreased. It is known that by emission principal. After annealing of emitting layer, EL devices enhances the interface adhesion between the emissive polymer and Indium-tin-oxide electrode, which takes a critical role to improve the emitting properties of EL devices.

  • PDF

A Experimental Study to Control Local Electric Field Intensification at Grounded Part of the Spacer in SF6 Gas Insulating System (SF6 가스절연 스페이서의 접지부 전계 완화에 대한 실험연구)

  • Cho, Yun-Ok;Choi, Byong-Ju;Kim, Kwang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.289-292
    • /
    • 1990
  • This study is to develope a spacer having almost uniform field distribution along the profile by controlling the high electric field in tensification at earthed part, especially triple junction in the spacer-electrode-gas boundary interface. Based on the extensive field calculation using CSM, a model spacer has been manufactured and tested. The test results show that the breakdown strength of the spacer is almost same as that of SF6 gas itself without spacer.

  • PDF

A Basic Study on Electrification Phenomena of Synthetic Polymer Material (합성고분자재료의 대전현상에 관한 기초연구)

  • 이덕출;한상옥
    • 전기의세계
    • /
    • v.28 no.10
    • /
    • pp.48-54
    • /
    • 1979
  • The electrification phenomena of polymerized materials is governed by the competitive processes of the charge generation and the charge dissipation. In this paper, The charged particles were supplied on the naked upper surface of the polyethylene film from a point corona discharge with a screen electrode which controls the potential difference across the film. The charging current with the corona charging was found to be larger than that obtained with the electric charging on the MIM structure and the discharge current was found to flow in the same direction as that of the charging current. these results can suggest that the charge injection occurs from the interface between the polethylene surface and the accumulated charge layer, the injected charge are trapped and the space charge is established.

  • PDF

CMP of PZT Films for ERAM Applications (강유전소자 적용을 위한 PZT박막의 CMP 공정 연구)

  • Seo, Yong-Jin;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.107-108
    • /
    • 2005
  • In this paper, we first applied the chemical mechanical polishing (CMP) process to the planarization of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. $Pb_{1.1}(Zr_{0.52}Ti_{0.48})O_3$ (shortly PZT) ferroelectric film was fabricated by the sol-gel method. And then, we compared the structural characteristics before and after CMP process of PZT films. Their dependence on slurry composition was also investigated. We expect that our results will be useful promise of global planarization for ferroelectric random access memories (FRAM) application in the near future.

  • PDF

High Efficiency Dye-Sensitized Solar Cells: From Glass to Plastic Substrate

  • Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.294-294
    • /
    • 2010
  • Over the last decade, dye-sensitized solar cell (DSSC) has attracted much attention due to the high solar-to-electricity conversion efficiency up to 10% as well as low cost compared with p-n junction photovoltaic devices. DSSC is composed of mesoporous TiO2 nanoparticle electrodes coated with photo-sensitized dye, the redox electrolyte and the metal counter electrode. The performances of DSSC are dependent on constituent materials and interface as well as device structure. Replacing the heavy glass substrate with plastic materials is crucial to enlarge DSSC applications for the competition with inorganic based thin film photovoltaic devices. One of the biggest problems with plastic substrates is their low-temperature tolerance, which makes sintering of the photoelectrode films impossible. Therefore, the most important step toward the low-temperature DSSC fabrication is how to enhance interparticle connection at the temperature lower than $150^{\circ}C$. In this talk, the key issues for high efficiency plastic solar cells will be discussed, and several strategies for the improvement of interconnection of nanoparticles and bendability will also be proposed.

  • PDF

The interfaces between Alq3 and ZnO substrates with various orientations

  • Lee, Jeong-Han;Lee, Yeon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.343-343
    • /
    • 2011
  • ZnO has been introduced as one of the good candidates for next generation opto-electronics. Recently, ZnO is known to be suitable for the transparent electrode in organic solar cells and light emitting devices. The contact with n-type organic material has been studied due to the n-type properties of ZnO. However, the surface of ZnO has shown different electronic property with respect to its surface orientation. Therefore, it is presumed that there are differences in the interfacial electronic structures between organic materials and ZnO with different orientation. Therefore, it is required to classify the interfacial electronic structures according to the surface orientation of ZnO. In this study, we measured the interfacial electronic structures between the ZnO substrate having various orientations and a typical n-type organic material, tris-(8-hydroxyquinoline) aluminum (Alq3). In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We found the changes in the electronic structures with respect to the orientation of ZnO substrate and it could be used to improve the contact between ZnO and Alq3.

  • PDF

Realization of flexible polymer solar cell by annealing-free process using 1,8-Diiodooctane as additive

  • Kim, Youn-Su;Ju, Byeong-Kwon;Kim, Kyung-Kon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.383-383
    • /
    • 2011
  • We fabricated thermal annealing-free polymer solar cells (PSC) by processing with additive and applied to flexible substrates. The 1, 8-Diiodooctane of 3 vol% blended with active solution resulted in enhancement of $J_{SC}$ due to increase of light absorption and hole mobility as improving the crystallinity of P3HT. In addition, the $V_{OC}$ of PSCs with additive was improved by inserting $TiO_2$ layer without any treatment. The $TiO_2$ layer prevented the direct contact between active layer and Al electrode and reduced the charge recombination near Active/Al interface. It was confirmed by calculation of J0 and photo-voltage transient measurement. The power conversion efficiencies of annealing-free PSCs using additive for ITO glass and flexible (ITO PEN) substrate were obtained 3.03% and 2.45%, respectively.

  • PDF

Surface-Enhanced Raman Spectroscopic Studies of Oriented Monolayers on Electrode Surfaces

  • Yoon, Wan-Shik;Im, Jung-Hyuk;Kim, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.699-705
    • /
    • 1995
  • Monolayers of hypericin, a photodynamic polycyclic quinoidal compound, were prepared at the air-water interface, and were transferred to metal substrates to form Langmuir-Blodgett (LB) monolayers. The structural characteristics of hypericin LB monolayers and self-assembled (SA) monolayers were investigated using surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Both the spectroscopic data and the surface pressure - area (${\pi}-A$) isotherms suggest that hypericin forms ${\pi}-{\pi}$ aggregates that orient vertically to the subphase surface. Whereas the ordering and orientation of control was less effective in SA monolayers, a higher structural regularity was attained in LB systems. The effect of subphase on the structural integrity of the monolayer was also investigated.

  • PDF

Atomic Force Microscopy Applications to the Next Generation Lithium-ion Batteries (차세대 리튬이온이차전지 연구에서의 원자력 현미경 활용)

  • Lee, Ji Hyun;Gong, Sang Hyuk;Kim, Hyeong Woo;Kim, Hyung-Seok
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.381-392
    • /
    • 2019
  • Recently, demands for lithium-ion batteries (LIB) in various fields are increasing. In particular, understanding of the reaction mechanism occurring at the electrode-electrolyte surface/interface is significant for the development of advanced LIBs. Meanwhile, research and development of LIBs highly requires a new specific characterization approach. For example, atomic force microscopy (AFM) has been utilized to the LIB research field for various purposes such as investigation of topography, electrochemical reactions, ion transport phenomena, and measurement of surface potential at high resolution. Advances in the AFM analysis have made it possible to inspect various material properties such as surface friction and Young's modulus. Therefore, this technique is expected to be a powerful method in the LIB research field. Here, we review and discuss ways to apply AFM to LIB studies.

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.