• 제목/요약/키워드: Electrochromic

검색결과 153건 처리시간 0.037초

The Fabrication of Porous Nickel Oxide Thin Film using Anodization Process for an Electrochromic Device

  • 이원창;최은창;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.407.1-407.1
    • /
    • 2016
  • Electrochromism is defined as a phenomenon which involves persistently repeated change of optical properties between bleached state and colored state by simultaneous injection of electrons and ions, sufficient to induce an electrochemical redox process. Due to this feature, considerable progress has been made in the synthesis of electrochromic (EC) materials, improvements of EC properties in EC devices such as light shutter, smart window and variable reflectance mirrors etc. Among the variable EC materials, solid-state inorganics in particular, metal oxide semiconducting materials such as nickel oxide (NiO) have been investigated extensively. The NiO that is an anodic EC material is of special interest because of high color contrast ratio, large dynamic range and low material cost. The high performance EC devices should present the use of standard industrial production techniques to produce films with high coloration efficiency, rapid switching speed and robust reversibility. Generally, the color contrast and the optical switching speed increase drastically if high surface area is used. The structure of porous thin film provides a specific surface area and can facilitate a very short response time of the reaction between the surface and ions. The large variety of methods has been used to prepare the porous NiO thin films such as sol-gel process, chemical bath deposition and sputtering. Few studies have been reported on NiO thin films made by using sol-gel method. However, compared with dry process, wet processes that have the questions of the durability and the vestige of bleached state color limit the thin films practical use, especially when prepared by sol-gel method. In this study, we synthesis the porous NiO thin films on the fluorine doped tin oxide (FTO) glass by using sputtering and anodizing method. Also we compared electrical and optical properties of NiO thin films prepared by sol gel. The porous structure is promised to be helpful to the properties enhancement of the EC devices.

  • PDF

리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구 (Electrochromic Properties of Li+-Modified Prussian Blue)

  • 유성종;임주완;박선하;원호연;성영은
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.126-131
    • /
    • 2007
  • [ $Li_+$ ]를 기반으로 하는 비수용액 전해질에서 Prussian blue가 degradation이 없이 구동할 수 있도록 소재를 design하고 제조하여 전기화학적 변색특성을 연구하였다. Prussian blue는 ITO가 코팅되어 있는 유리판위에 일정전류-전착법으로 코팅을 했고, 이 때 사용된 코팅 용액은 $FeCl_3,\;K_3Fe(CN)_6$을 deionized water에 녹이고, HCl, KCl, LiCl을 각각 넣었다. 전기화학적 변색특성을 비교하기 위해 continuous와 pulse potential cycle 하는 동안 transmittance 변화를 in-situ He-Ne laser를 이용하여 측정하였고, electroactive layer thickness를 통해 degradation된 정도를 실험하였다.

전기변색 성능 향상을 위한 바나듐산화물 막의 결정성 제어 효과 (Crystallinity Control Effects on Vanadium Oxide Films for Enhanced Electrochromic Performances)

  • 김규호;배주원;이태근;안효진
    • 한국재료학회지
    • /
    • 제29권6호
    • /
    • pp.385-391
    • /
    • 2019
  • In the present study, vanadium oxide($V_2O_5$) films for electrochromic(EC) application are fabricated using sol-gel spin coating method. In order to optimize the EC performance of the $V_2O_5$ films, we adjust the amounts of polyvinylpyrrolidone(PVP) added to the solution at 0, 5, 10, and 15 wt%. Due to the effect of added PVP on the $V_2O_5$ films, the obtained films show increases of film thickness and crystallinity. Compared to other samples, optimum weight percent(10 wt%) of PVP led to superior EC performance with transmittance modulation(45.43 %), responding speeds(6.0 s at colored state and 6.2 s at bleached state), and coloration efficiency($29.8cm^2/C$). This performance improvement can be mainly attributed to the enhanced electrical conductivity and electrochemical activity due to the increased crystallinity and thickness of the $V_2O_5$ films. Therefore, $V_2O_5$ films fabricated with optimized amount of PVP can be a promising EC material for high-performance EC devices.