• 제목/요약/키워드: Electrochemical sensor method

검색결과 87건 처리시간 0.029초

Determination of Hydrogen Peroxide on Modified Glassy Carbon Electrode by Polytetrakis(2-aminophenyl)porphyrin Nanowire

  • Jeong, Hae-Sang;Kim, Song-Mi;Seol, Hee-Jin;You, Jung-Min;Jeong, Eun-Seon;Kim, Seul-Ki;Seol, Kyung-Sik;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2979-2983
    • /
    • 2009
  • Nanowires of polytetrakis(o-aminophenyl)porphyrin (PTAPPNW) were fabricated by electrochemical polymerization with the cyclic voltammetric method in anodic aluminum oxide (AAO) membranes. The glassy carbon electrode (GCE) modified by PTAPPNW, single-walled carbon nanotubes (SWNT) and Nafion as a binder was investigated with voltammetric methods in a phosphate buffer saline (PBS) solution at pH 7.4. The PTAPPNW + SWNT + Nafion/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide ($H_2O_2$), which shortened the response time and enhanced the sensitivity for $H_2O_2$ determination at an applied potential of 0.0 V by amperometric method. The PTAPPNW + SWNT + Nafion/GCE can be used to monitor $H_2O_2$ at very low concentrations in biological pH as an efficient electrochemical $H_2O_2$ sensor.

Daily Amperometric Monitoring of Immunoglobulin E in a Mouse Whole Blood: Model of Ovalbumin Induced Asthma

  • Lee, Ju Kyung;Yoon, Sung-hoon;Kim, Sang Hee
    • 전기화학회지
    • /
    • 제25권1호
    • /
    • pp.13-21
    • /
    • 2022
  • There is an increasing interest in monitoring of specific biomarker for determining progression of a disease or efficacy of a treatment. Conventional method for quantification of specific biomarkers as enzyme linked immunosorbent assay (ELISA) has high material costs, long incubation periods, requires large volume of samples and involves special instruments, which necessitates clinical samples to be sent to a lab. This paper reports on the development of an electrochemical biosensor to measure total immunoglobulin E (IgE), a marker of asthma disease that varies with age, gender, and disease in concentrations from 0.3-1000 ng/mL with consuming 20 µL volume of whole blood sample. The sensor provides rapid, accurate, easy, point-of-care measurement of IgE, also, sequential monitoring of total IgE with ovalbumin (OVA) induced mice is another application of sensor. Taken together, these results provide an alternative way for detection of biomarkers in whole blood with low volumes and long-term ex-vivo assessments for understanding the progression of a disease.

Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide

  • Maulidiyah, Maulidiyah;Azis, Thamrin;Lindayani, Lindayani;Wibowo, Dwiprayogo;Salim, La Ode Agus;Aladin, Andi;Nurdin, Muhammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.394-401
    • /
    • 2019
  • The unique study of TiO2 sol-gel modified carbon paste electrode (CPE) nanocomposites have been developed for electrochemical sensor detecting fipronil pesticide compound. We develop the easy synthesized TiO2 via a sol-gel method and modified in CPE which applied electrochemical system as cyclic voltammetry (CV) because the concentration is proportional with current peaks. We discover the TiO2 optimal mass used of 0.1 g which is compared with 0.7 g carbon and 0.3 mL paraffin. It has high-current anodic (Ipa) of 1.13×103 μA and high-current cathodic (Ipc) -0.96×103 μA in scan rate of 0.5 V/s. The limit of detection (LOD) of fipronil has been determined of 34.0×10-5 μM in percent recovery of 0.8%. Its high-stability for lifetime TiO2-CPE nanocomposites was expressed for 13 days which mean that can be used for detecting fipronil pesticide.

Ion-Imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+

  • An, Zhuolin;Liu, Weifeng;Liang, Qi;Yan, Guang;Qin, Lei;Chen, Lin;Wang, Meiling;Yang, Yongzhen;Liu, Xuguang
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850140.1-1850140.9
    • /
    • 2018
  • An electrochemical sensor ($Cu^{2+}$-IIPs/GCE) was developed for detection of $Cu^{2+}$ in water. $Cu^{2+}$-IIPs/GCE was prepared by dispersing $Cu^{2+}$ imprinted polymers ($Cu^{2+}$-IIPs) on a preprocessed glassy carbon electrode. $Cu^{2+}$-IIPs were synthesized on the surface of modified carbon spheres by ion imprinting technology. The electrochemical performance of $Cu^{2+}$-IIPs/GCE was evaluated by differential pulse voltammetry method. The response of $Cu^{2+}$-IIPs/GCE to $Cu^{2+}$ was linear in $1.0{\times}10^{-5}mol/L$ to $1.0{\times}10^{-3}mol/L$. The detection limit was $5.99{\times}10^{-6}mol/L$ (S=N = 3). The current response value of $Cu^{2+}$-IIPs/GCE was 2.14 times that of the nonimprinted electrode. These results suggest that $Cu^{2+}$-IIPs/GCE can detect the concentration of $Cu^{2+}$ in water, providing a new way for heavy metal ions adsorption and testing.

Development of Single-layer-structured Glucose Biosensor

  • Lee, Young-Tae;Kwon, Min Su
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.83-87
    • /
    • 2015
  • In this paper, we fabricated a low-cost glucose sensor with a simpler structure and fabrication process than the existing glucose sensor. The currently used glucose sensor has a three-layer structure with upper, middle, and bottom plates; here, we fabricated a single-layer glucose sensor using only a printing and dispensing process. We successfully fabricated the glucose sensor using a simple method involving the formation of an electrode and insulator layer through a 2- or 3-step printing process on plastic or paper film, followed by the dispensing of glucose oxidase solution on the electrode. Cyclic voltammetry (CV) and cyclic amperometry (CA) measurements were used to evaluate the characteristics of the fabricated single-layer glucose sensor. Also, its sensitivity was analyzed through glucose-controlled blood measurements. Hence, a low-cost single-layer glucose sensor was fabricated with evaluation of its characteristics demonstrating that it has useful application in medicine.

Voltammetric Assay of Antibiotics for Modified Carbon Nanotube Sensor

  • Ly, Suw-Young;Yoo, Hai-Soo;Lee, Chang-Hyun
    • 한국응용과학기술학회지
    • /
    • 제29권3호
    • /
    • pp.443-449
    • /
    • 2012
  • A investigation of electrochemical analysis of antibiotics Neomycin ($C_{23}H_{46}N_6O_{13}$) was searched using electrochemical square wave (SW) stripping and cyclic voltammetry (CV) using working sensor of the modified carbon nanotube combination electrodes, optimum diagnostic parameters were searched by anodic stripping, final conditions were attained to working range of 1.0-14.0 ng/L, detection limit (S/N) was found to be 0.6 ng/L. The developed method was discovered to be fitting in quality control in the food, pharmaceutical and other manufacturing sectors.

Label-Free Electrochemical DNA Detection Based on Electrostatic Interaction between DNA and Ferrocene Dendrimers

  • Lee, Ji-Young;Kim, Byung-Kwon;Hwang, Seong-Pil;Lee, Young-Hoon;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3099-3102
    • /
    • 2010
  • A label-free DNA detection method was developed for a simple electrochemical DNA sensor with a short assay time. Self-assembled monolayers of peptide nucleic acid were used as a probe on gold electrodes. The formation of the self-assembled monolayers on the gold electrodes was successfully checked by means of cyclic voltammetry. The target DNA, hybridized with peptide nucleic acid, can be detected by the anodic peak current of ferrocene dendrimers, which interact electrostatically with the target DNA. This anodic peak current was measured by square wave voltammetry at 0.3 V to decrease the detection limit on the order of the nanomolar concentrations. As a result, the label-free electrochemical DNA sensor can detect the target DNA in concentrations ranging from 1 nM to $1\;{\mu}M$ with a detection limit of 1 nM.

Electrochemical Monitoring of NADH Redox with NPQD-modified Electrodes for Cell Viability Assessment

  • JuKyung Lee;Hye Bin Park;Chae Won Seo;Chae Won Seo;SangHee Kim
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.412-417
    • /
    • 2023
  • There is increasing interest in the rapid and highly sensitive monitoring of cell viability in biological and toxicological research. Conventional methods depend on optical assays using Water Soluble Tetrazolium-8 (WST-8) or 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, which requires a large volume of samples and special instruments, necessitating shipment of clinical samples to laboratories. This paper reports on the development of a rapid and sensitive electrochemical (EC) sensor using screen printed electrode (SPE) and surface modification using 4'-mercapto-N-phenylquinone diamine (4'-NPQD), as double electron mediators, for monitoring cell viability via the measurement of nicotinamide adenine dinucleotide (NADH). We used the sensor to observe the viability of MCF-7 and doxorubicin (Dox)-treated cells. The oxidation current of NADH was measured via chronoamperometry (CA), and the EC results showed a good linear relationship when compared with NADH quantification using WST-8 assay. The analysis time was only 10 s and limit of detection (LOD) of NADH was 1.78 µM. Our EC method has the potential to replace conventional WST assays for cell viability and cytotoxicity experiments.

전극표면 연마 유니트를 이용한 전기화학적 COD측정용 센서의 개발 (Development of a COD(Chemical Oxygen Demand) Sensor Using an Electrode-surface Grinding Unit)

  • 윤석민;최창호;박병선;진길주;정봉근;현문식;박종만;이승선;이동희;김형주
    • 대한환경공학회지
    • /
    • 제28권4호
    • /
    • pp.453-458
    • /
    • 2006
  • 수질의 빠르고 정확한 COD(Chemical Oxygen Demand)의 측정을 위하여 전극표면 연마장치가 부착된 전기화학적 측정 센서시스템을 연구하였다. 수질 내 유기물에 대한 Cu의 산화작용이 COD 측정의 기본원리로 이용되었으며, 3전극계를 적용한 전기화학 셀을 COD 측정시스템에 적용하였다. 장시간의 COD 측정에 대비하여, Cu전극의 내구성과 안정성을 유지시키기 위해 회전되는 연마석을 이용한 자동연마장치를 부착하였다. 유기물을 함유한 인공시료 및 실제 현장시료를 이용하여 COD 변화에 대한 측정가능성을 실험하였고, $COD_{Mn}$ 수치와 COD 측정용 센서를 이용하여 측정한 Coulombic yield와의 사이에 높은 상관관계($r^2=0.93$)를 가지며 이 측정값을 EOD(electrochemical oxygen demand)로 표현할 수 있다는 것을 확인하였다. 이러한 측정 결과를 토대로 이 시스템이 폐수처리장 및 하수에 연속 COD 측정 장치로 적용할 수 있는 가능성이 있을 것으로 확인하였다.

표면 개질된 샤프심 전극의 전기화학적 특성 고찰 및 비효소적 글루코스 센서 활용 (Electrochemical Characteristics of Pencil Graphite Electrode Through Surface Modification and its Application of Non-enzymatic Glucose Sensor)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제62권2호
    • /
    • pp.147-152
    • /
    • 2024
  • 의료용 센서들은 대부분 일회용 제품으로, 검사·진단 비용을 줄이기 위해서는 저가의 전극 소재 개발이 무엇보다 중요하다. 본 연구에서는 일회용 전기화학센서의 전극 소재로 pencil graphite를 도입하여 전처리 효과와 전도성 고분자 폴리아닐린(polyaniline; PANI) 및 금속 산화물 CuO NPs를 이용한 표면 개질(modification)을 통한 전기화학적 특성을 조사하고, 이를 글루코스 검출용 비효소 전기화학센서에 적용하였다. Pencil graphite electrode (PGE)의 표면 활성화를 위한 전처리는 화학적과 전기화학적으로 각각 진행되었으며, 전처리된 샘플들은 시간대전류법(CA)과 순환전압 전류법(CV), 전기화학 임피던스(EIS) 분석법을 이용한 전기화학적 특성 조사를 통해 최종적으로 전기화학적 전처리 방법을 채택하여 CuO NPs/PANI/E-PGE를 제작하였다. 이를 적용한 비효소적 글루코스 검출용 전기화학 센서는 0.282 ~2.112 mM과 3.75423~50 mM의 선형 구간에서 각각 239.18 mA/mM×cm2과 36.99 mA/mM×cm2 정도의 감도(sensitivity)와 17.6 μM의 검출 한계(detection limit), 글루코스에 대한 좋은 선택도(selectivity)를 보였다. 본 연구의 결과를 토대로 PGEs를 활용한 다양한 일회용 센서 응용과 저가의 고성능 전극 소재 개발 가능성을 확인하고, 더 많은 분야에 활용할 수 있을 것으로 기대된다.