• Title/Summary/Keyword: Electrochemical process

Search Result 1,269, Processing Time 0.024 seconds

Synthesis and characterization of NiFe2O4 nanoparticle electrocatalyst for urea and water oxidation (요소 산화반응을 위한 NiFe2O4 나노파티클 촉매 합성 및 특성 분석 )

  • Ki-Yong Yoon;Kyung-Bok Lee;Dohyung Kim;Hee Yoon Roh;Sung Mook Choi;Ji-hoon Lee;Jaehoon Jeong;Juchan Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.243-249
    • /
    • 2023
  • Urea oxidation reaction (UOR) via electrochemical oxidation process can replace oxygen evolution reaction (OER) for green hydrogen production since UOR has lower thermodynamic potential (0.37 VRHE) than that of OER (1.23 VRHE). However, in the case of UOR, 6 electrons are required for the entire UOR. For this reason, the reaction rate is slower than OER, which requires 4 electrons. In addition, it is an important challenge to develop catalysts in which both oxidation reactions (UOR and OER) are active since the active sites of OER and UOR are opposite to each other. We prove that among the NiFe2O4 nanoparticles synthesized by the hydrothermal method at various synthesis temperatures, NiFe2O4 nanoparticle with properly controlled particle size and crystallinity can actively operate OER and UOR at the same time.

The Comparison of Activation Protocols for PEMFC MEA with PtCo/C Catalyst (PtCo/C 촉매를 사용한 PEMFC MEA의 활성화 프로토콜 비교)

  • GISEONG LEE;HYEON SEUNG JUNG;JINHO HYUN;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.178-186
    • /
    • 2023
  • Three activation methods (constant voltage, current cycling, and hydrogen pumping) were applied to investigate the effects on the performance of the membrane electrode assembly (MEA) loaded with PtCo/C catalyst. The current cycling protocol took the shortest time to activate the MEA, while the performance after activation was the worst among the all activation methods. The constant voltage method took a moderate activation time and exhibited the best performance after activation. The hydrogen pumping protocol took the longest time to activate the MEA with moderate performance after activation. According to the distribution of relaxation time analysis, the improved performance after the activation mainly comes from the decrease of charge transfer resistance rather than the ionic resistance in the cathode catalyst layer, which suggests that the existence of water on the electrode is the key factor for activation.

A Study on Corrosion Resistance of CA2-Mixed Paste (CA2 혼입 페이스트의 부식저항성에 관한 연구)

  • Kim, Jae-Don;Jang, Il-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.289-297
    • /
    • 2022
  • Deterioration in durability of structures due to the steel corrosion is difficult to determine whether or not corrosion is initiated and how much propagated, and moreover, repair and maintenance are not easy to deal with. Therefore, preventive treatments can be the best option to avoid the deterioration. Various methods for preventing corrosion of steel, such as electrochemical treatments, anti-corrosion agents and steel surface coatings, are being developed, but economic and environmental aspects make it difficult to apply them to in-situ field. Thus, the purpose of this study was to improve corrosion resistance by using CA-based clinker that are relatively simple and expected to be economically profitable Existing CA-based clinkers had problems such as flash setting and low strength development during the initial hydration process, but in order to solve this problem, CA clinker with low initial reactivity were used as binder in this study. The cement paste used in the experiments was replaced with CA2 clinker for 0%, 10%, 20%, and 30% in OPC. And the mixture used in the chloride binding test for the extraction of water-soluble chloride was intermixed with Cl- 0.5%, 1%, 2%, and 3% by weight of binder content. To evaluate characteristic of hydration heat evolution, calorimetry analysis was performed and simultaneously chloride binding capacity and acid neutralization capacity were carried out. The identification of hydration products with curing ages was verified by X-ray diffraction analysis. The free chloride extraction test showed that the chlorine ion holding ability improved in order OC 10 > OC 30 > OC 20 > OC 0 and the pH drop resistance test showed that the resistance capability in pH 12 was OC 0 > OA 10 > OA 20 > OA 30. The XRD analyses showed that AFm phase, which can affect the ability to hold chlorine ions, tended to increase when CA2 was mixed, and that in pH12 the content of calcium hydroxide (Ca(OH)2), which indicates pH-low resistance, decreased as CA2 was mixed

Rich Se Nanoparticles Modified Mo-W18O49 as Enhanced Electrocatalyst for Hydrogen Evolution Reaction

  • Wang, Jun Hui;Tang, Jia-Yao;Fan, Jia-Yi;Meng, Ze-Da;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • Herein a rich, Se-nanoparticle modified Mo-W18O49 nanocomposite as efficient hydrogen evolution reaction catalyst is reported via hydrothermal synthesized process. In this work, Na2SeSO3 solution and selenium powder are used as Se precursor material. The structure and composition of the nanocomposites are characterized by X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), EDX spectrum analysis and the corresponding element mapping. The improved electrochemical properties are studied by current density, and EIS analysis. The as-prepared Se modified Mo-W18O49 synthesized via Na2SeSO3 is investigated by FE-SEM analysis and found to exhibit spherical particles combined with nanosheets. This special morphology effectively improves the charge separation and transfer efficiency, resulting in enhanced photoelectric behavior compared with that of pure Mo-W18O49. The nanomaterial obtained via Na2SeSO3 solution demonstrates a high HER activity and low overpotential of -0.34 V, allowing it to deliver a current density of 10 mA cm-2.

Variations in electrode characteristics through simplification of phosphorus-doped NiCo2O4 electrode manufacturing process (인이 도핑된 NiCo2O4 전극 제조 공정의 간소화를 통한 전극 특성의 변화)

  • Seokhee-Lee;Hyunjin Cha;Jeonghwan Park;Young Guk Son;Donghyun Hwang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.299-308
    • /
    • 2023
  • In this study, phosphorus (P)-doped nickel cobaltite (P-NiCo2O4) and nickel-cobalt layered double hydroxide (P-NiCo-LDH) were synthesized on nickel (Ni) foam as a conductive support using hydrothermal synthesis. The thermal properties, crystal structure, microscopic surface morphology, chemical distribution, electronic state of the constituent elements on the sample surface, and electrical properties of the synthesized P-NiCo2O4 and P-NiCo-LDH samples were analyzed using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The P-NiCo2O4 electrode exhibited a specific capacitance of 1,129 Fg-1 at a current density of 1 Ag-1, while the P-NiCo-LDH electrode displayed a specific capacitance of 1,012 Fg-1 at a current density of 1 Ag-1. When assessing capacity changes for 3,000 cycles, the P-NiCo2O4 electrode exhibited a capacity retention rate of 54%, whereas the P-NiCo-LDH electrode showed a capacity retention rate of 57%.

Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization (막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막)

  • Min-Kyu Shin;Hyeon-Bee Song;Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.257-268
    • /
    • 2023
  • Membrane capacitive deionization (MCDI) is a variation of the conventional CDI process that can improve desalination efficiency by employing an ion-exchange membrane (IEM) together with a porous carbon electrode. The IEM is a key component that greatly affects the performance of MCDI. In this study, we attempted to derive the optimal fabricating factors for IEMs that can significantly improve the desalination efficiency of MCDI. For this purpose, pore-filled IEMs (PFIEMs) were then fabricated by filling the pores of the PE porous support film with monomers and carrying out in-situ photopolymerization. As a result of the experiment, the prepared PFIEMs showed excellent electrochemical properties that can be applied to various desalination and energy conversion processes. In addition, through the correlation analysis between MCDI performance and membrane characteristic parameters, it was found that controlling the degree of crosslinking of the membranes and maximizing permselectivity within a sufficiently low level of membrane electrical resistance are the most desirable membrane fabricating condition for improving MCDI performance.

Effect of Solution Annealing Heat Treatment on the Localized Corrosion Resistance of Inconel 718 (Inconel 718의 국부 부식 저항성에 미치는 용체화 열처리의 영향)

  • Yoonhwa Lee;Jun-Seob Lee;Soon Il Kwon;Jungho Shin;Je-hyun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • The localized corrosion resistance of the Ni-based Inconel 718 alloy after solution heat treatment was evaluated using electrochemical techniques in a solution of 25 wt% NaCl and 0.5 wt% acetic acid. Solution heat treatment at 1050 ℃ for 2.5 hours resulted in an increased average grain diameter. Both Ti carbides (10 ㎛ diameter) and Nb-Mo carbides (1 - 9 ㎛ diameter) were distributed throughout the material. Despite heat treatment, the shape and composition of these carbides remained consistent. An increase in solution temperature led to a decrease in pitting potential value. However, the pitting potential value of solution heat-treated Inconel 718 was consistently higher than that of as-received Inconel 718 at all tested temperatures. Localized corrosion initiation occurred at 0.4 VSSE in a temperature environment of 80 ℃ for both as-received and solution heat-treated Inconel 718 alloys. X-ray photoelectron spectroscopic analysis indicated that the composition of the passive film formed on specimen surfaces remained largely unchanged after solution heat treatment, with O1s, Cr2p3/2, Fe2p3/2, and Ni2p3/2 present. The difference in localized corrosion resistance between as-received and solution heat-treated Inconel 718 alloys was attributable to microstructural changes induced by the heat treatment process.

Enhancement of oxygen evolution reaction of NiCo LDH nanocrystals using Mo doping (Mo 도핑을 이용한 NiCo LDH 나노결정의 산소발생반응 향상)

  • Kyoungwon Cho;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.92-97
    • /
    • 2024
  • To improve the efficiency of water splitting systems for hydrogen production, the high overvoltages of electrochemical reactions caused by catalysts in the oxygen evolution reaction (OER, Oxygen Evolution Reaction) must be reduced. Among them, LDH (Layered Double Hydroxide) compounds containing transition metal such as Ni, are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metallic porous material, was used as a support, and NiCo LDH (Layered Double Hydroxide) nanocrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the shape, crystal structure, and water decomposition characteristics of the Mo-doped NiCo LDH nanocrystal samples synthesized by doping Mo to improve OER properties were observed.

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.

Reaction Gas Composition Dependence on the Properties of SnO2 Films on PET Substrate by ECR-MOCVD (반응가스조성이 PET기판위에 ECR 화학증착법에 의해 제조된 SnO2 박막특성에 미치는 영향)

  • Kim, Yun-Seok;Lee, Joong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.3
    • /
    • pp.139-145
    • /
    • 2005
  • [ $SnO_x$ ] films on the flexible substrate of PET film were prepared at ambient temperature under a $(CH_3)_4Sn(TMT: tetra-methyl tin)-H_2-O_2$ atmosphere in order to obtain transparent conductive polymer by using ECR-MOCVD(Electro Cyclotron Resonance Metal Organic Chemical Yfpor Deposition) system. The prepared $SnO_x$ thin films show generally over $90\%$ of optical transmittance at wavelength range of 380-780nm and about $1\times10^{-2\~3}ohm{\cdot}cm$ of electrical resistivity. In the present study, effects of $O_2/TMT\;and\;H_2/TMT$ mole ratio on the properties of $SnO_x$ films are investigated and the other process parameters such as microwave power, magnetic current power, substrate distance and working pressure are fixed. Based on our experimental results, the $SnO_x$ film composition ratio of Sn and O directly influences on the electrical and optical properties of the films prepared. The $SnO_x$ film with low electric resistivity and high transmittance could be obtained by controlling the process parameters such as $O_2/TMT\;and\;H_2/TMT$ mole ratio, which play an important role to change the composition ratio between Sn and O. An increase of $O_2/TMT$ mole ratio brought on the increases 0 content in the $SnO_x$ film. On the other hand, an increase of $H_2/TMT$ mole ratio lead to decreases the oxygen content in the film. The optimized composition ratio of oxygen : tin Is determined as 2.4: 1 at $O_2/TMT$ of 80 and $H_2/TMT$ of 40 mole ratio, respectively.