• Title/Summary/Keyword: Electrochemical process

Search Result 1,272, Processing Time 0.034 seconds

Finite Element Simulation and Experimental Study on the Electrochemical Etching Process for Fabrication of Micro Metal Mold (미세금형 가공을 위한 전기화학식각 공정의 유한요소 해석 및 실험결과 비교)

  • Ryu, Heon-Yul;Im, Hyeon-Seung;Cho, Si-Hyeong;Hwang, Byeong-Jun;Lee, Sung-Ho;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.482-488
    • /
    • 2012
  • To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of $H_2SO_4$, $H_3PO_4$, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

A proposal of the electrochemical polishing method using the point electrode tools (점 전극을 이용한 전해연마법의 제안)

  • 이승훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.48-53
    • /
    • 1998
  • In this paper, the new electrochemical machining method is proposed for the micro unit fabrication by using the point electrode tools. The precision shape control capacity is improved by using the point electrode method. It was observed that an electric discharge phenomenon occurs during the electrochemical machining process by using the spraying and torrent type electrolyte supply method.

  • PDF

Preparation of nano composite metal-oxide electrode and its application for superrcapacitor (나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용)

  • Kim, Hong-Il;Lee, Ju-Won;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Electrochemical Performance of Carbon Coated LiMn2O4 Nanoparticles using a New Carbon Source

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • The electrochemical performance of carbon-coated LiMn2O4 nanoparticles was reported. The polydopamine layer was introduced as a new organic carbon source. The carbon layer was homogeneously coated onto the surface of the LiMn2O4 nanoparticles because the polymerization process from the dopamine solution (in a buffer solution, pH 8.5) easily and uniformly formed a polydopamine layer. The phase integrity of LiMn2O4 deteriorated during the carbon-coating process due to oxygen loss, although the main structure was maintained. The carbon-coated sample led to improved rate capability because of the effect of the conductive carbon layer. Moreover, the carbon coating also enhanced the cyclic performance. This indicates that the carbon layer may suppress unwanted side reactions with the electrolytes and compensate for the low electronic conductivity of the pristine LiMn2O4.

A study on the Ultra precision ECM for Dynamic bearing (Dynamic Bearing의 초정밀 ECM 가공 특성에 관한 연구)

  • 신현정;김영민;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.151-154
    • /
    • 2002
  • In this paper a mathematical model, the results of computer simulation and exprimental investigations of electrochemical machining with a too-electrode are presented. The experimental investigations were carried out in order to evaluate the influence of working voltage, initial interelectrode gap size, and metal remove rate. Accuracy of computer simulation evaluated by differences between results of experimental test and computer simulation depends on electrochemical machining coefficient, total overpotential of electrode process, current density, electrical conductivity of electrolyte, and etc. Metal removal rate would be predicted by the simulation of ECM process.

  • PDF

Shape and Diameter Control of Microshafts in Electrochemical Process (전해 프로세스에 의한 미세축 가공시 형상 및 직경 제어)

  • Lim, Yung-Mo;Lim, Hyung-Jun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.50-56
    • /
    • 2001
  • Fabrication methods are shown to produce slender and cylindrical tungsten shafts by electrochemical etching. The shape of microshatf formed by electrochemical etching is determined by the combination of two conflicting factors, i.e., initial shape and diffusion layer. We can obtain a desirable shaft profile by adjusting the thickness gradient of diffusion layer. The diameter of microshaft is controlled by mathematical model based on relation between process parameters and diameter.

  • PDF

Electrochemical Characteristics of supercapacitor using organic-inorganic electrode (유-무기 복합전극을 이용한 수퍼커패시터의 전기화학적 특성)

  • Kim, Hong-Il;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.164-166
    • /
    • 2002
  • Over the past two decades, the electrochemical supercapaictors are receiving growing attention due to their possible applications as power backup in electronic equipment and electrical vehicles. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nano-structured supramolecular oligomer of 1,5-diamino anthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency

  • PDF

Fabrication of Ultrathin Punch by Electrochemical Process (전해 프로세스에 의한 초미세 펀치의 제작)

  • Lim, Hyung-Jun;Lim, Young-Mo;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.792-796
    • /
    • 2000
  • With the development of micro machining, it becomes an important part to fabricate an electrode which has tens of ${\mu}m$ or less. There are two methods to get a narrow hole; non-contact type such as EDM(Electro-discharge machining) and contact type such as punching. A punch which has a tapered shape with a cylindrical tip is fabricated in this paper. To make this punch, a method which was used to fabricate a cylindrical shape by electrochemical process was applied. The control factors for the shape and their limits are verified through an experiment.

  • PDF