• Title/Summary/Keyword: Electrochemical pretreatment

Search Result 44, Processing Time 0.021 seconds

High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery (리튬이온이차전지용 고효율 음극(SiO-Graphite))

  • Shin, Hye-Min;Doh, Chil-Hoon;Kim, Dong-Hun;Kim, Hyo-Seok;Ha, Kyung-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A new anode composition material comprising of SiO and Graphite has been prepared by adopting High energy ball milling (HEBM) technique. The anode material shows high initial charge and discharge capacity values of 1139 and 568 mAh/g, respectively. The electrode sustains reversible discharge capacity value of 719 mAh/g at 30th cycle with a high coulombic efficiency${\sim}99%$. Since the materials formed during initial charge process the nano silicon/$Li_4SiO_3$ and $Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversibility$(Li_2O)$ will deliver higher reversible capacity. In this study, constant current-constant voltage (CC-CV) charge method was employed in place of usual constant current (CC) method in order to convert efficiently all the SiO particles which resulted high initial discharge capacity at the first cycle. We improved considerably the initial discharge specific capacity of SiO/G composite by pretreatment(CC-CV).

Enhanced Electrocatalytic Activity of Platinized Carbon Electrode via NaBH4 Treatment (NaBH4 화학적 처리를 통한 백금화 카본 전극의 촉매반응 향상)

  • Yun, Changsuk;Hwang, Seongpil
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.581-584
    • /
    • 2020
  • The effect of a chemical pretreatment on the surface carbon was investigated using a scanning electron microscope (SEM) and electrochemical methods. Primitive carbon has a reducing power likely due to incompletely oxidized functional groups on the surface. We aim to control this reducing power by chemical treatment and apply for the spontaneous deposition of nanoparticles (NPs). Highly ordered pyrolytic graphite (HOPG) was initially treated with a reducing agent, NaBH4 or an oxidizing agent, KMnO4, for 5 min. Subsequently, the pretreated carbon was immersed in a platinum (Pt) precursor. Unexpectedly, SEM images showed that the reducing agent increased spontaneous PtNPs deposition while the oxidizing agent decreased Pt loading more as compared to that of using bare carbon. However, the amount of Pt on the carbon obviously decreased by NaBH4 treatment for 50 min. Secondly, spontaneous reduction on pretreated glassy carbon (GC) was investigated using the catalytic hydrogen evolution reaction (HER). GC electrode treated with NaBH4 for a short and long time showed small (onset potential: -640 mV vs. MSE) and large overpotential for the HER, respectively. Although the mechanism is unclear, the electrochemistry results correspond to the optical data. As a proof-of-concept, these results demonstrate that chemical treatments can be used to design the shapes and amounts of deposited catalytic metal on carbon by controlling the surface state.

Effects of ethanol and phenobarbital on hemoglobin adducts formation in rats exposed to benzidine (흰쥐에서 에탄올과 phenobarbital이 벤지딘의 헤모글로빈 부가체 형성에 미치는 영향)

  • Kim, Chi Nyon;Lee, Se Hoon;Kim, Hyun-Soo;Youn, Young-Shik;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.118-125
    • /
    • 2001
  • Recently, biochemical analysis using hemoglobin adduct is frequently performed to evaluate the exposure to chemical carcinogens. However, data on the effect of co-exposure with other chemicals on hemoglobin adduct formation are seldom provided. The objective of this study is to evaluate the effects of pretreatment of ethanol(EtOH) and phenobarbital(PB), which are known to affect metabolism of xenobiotics, on the formation of hemoglobin adducts in the rats(Sprague-Dawley) administered benzidine(BZ). The experimental rats were divided into control, EtOH, and P8 groups. Rats were pretreated with EtOH or PB 24 hours before the oral administration of BZ. Blood sampling was taken before the administration of the chemicals and 0.5, 3, 6, 9, 12, 24, 48, 72, 96, and 144 hours after the administration of the BZ in 5 rats each. The blood was separated into hemoglobin and plasma immediately after taking the blood samples, and the adducts were undergone basic hydrolysis to convert them into aromatic amines. Hydrolyzed BZ, monoacetylbenzidine (MABZ), and 4-aminobiphenyl(4ABP) were separated by reversed-phase liquid chromatography without derivatization, and quantitative analyses of them were performed by a highperformance liquid chromatograph equipped with electrochemical detector. The quantitative amount of the metabolites was expressed by hemoglobin binding index(HBI), BZ-, MABZ-, and 4ABP-HBI of EtOH and PB groups were increased more than those of control group. These results are attributable to the fact that EtOH and PB induced N-hydroxylation related to the hemoglobin adduct formation. The ratio of N-acetylation (viz, MABZ-HBI/BZ-HBI) showed no significant difference between EtOH group and control group. It means that EtOH increased N-hydroxylation and N-acetylation in a similar degree. The N-acetylation ratio of PB group was relatively lower than control group because the PB increased N-hydroxylation induction. The N-acetylation ratios of all groups were higher than 1 during the entire experimental period. This result suggests that the effects of EtOH or PB need to be considered in the biochemical monitoring for the assessment of intermittent exposure of benzidine.

  • PDF

Trends in Rapid Detection Methods for Marine Organism-derived Toxins (해양 생물 유래 독소의 나노 기술 기반 신속 진단법 개발 동향)

  • Park, Chan Yeong;Kweon, So Yeon;Moon, Sunhee;Kim, Min Woo;Ha, Sang-Do;Park, Jong Pil;Park, Tae Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.291-303
    • /
    • 2020
  • Marine organism-derived toxins have negative effects not only on human health but also in aquaculture, fisheries, and marine ecosystems. However, traditional analytical methods are insufficient in preventing this threat. In this paper, we reviewed new rapid methods of toxin detection, which have been improved by adopting diverse types of nanomaterials and technologies. Moreover, we herein describe the main strategies for toxin detection and their related sensing performance. Notably, to popularize and commercialize these newly developed technologies, simplifying the process of pre-treating real samples real samples is very important. As part of these efforts, numerous studies have reported pretreatment methods based on the antibody-immobilized magnetic nanoparticles, and some cases have applied nanoparticles to enhance the sensing performance by utilizing the intrinsic catalytic activity. Furthermore, some reports have introduced fluorescent nanoparticles, such as quantum dots, to represent the lower detection limits of conventional enzyme-based colorimetric methods and lateral flow assays. Some studies using electrochemical measurements based on aptamer-nanoparticle complexes have also been announced. In addition, as the response to new toxins generated by changes in the marine environment is still lacking, further research on diagnostic and detection is also greatly needed for these kinds of marine toxins and their derivatives.