• Title/Summary/Keyword: Electrochemical polymerization

Search Result 114, Processing Time 0.025 seconds

PEDOT Polymer Film Based Counter Electrodes for Pt-free Dye-Sensitized Solar Cells

  • Kwon, Jeong;Park, Jong Hyeok
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.89-92
    • /
    • 2013
  • Poly (3,4-ethylenedioxythiophene) (PEDOT) polymers with different electric conductivities were synthesized directly on a FTO substrate via a chemical polymerization method and applied as a platinum (Pt)-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the PEDOT as a function of electrical conductivity were studied using cyclic voltammograms, J-V measurements and impedance spectroscopy. The PEDOT counter electrode with around 340 S/cm conductivity exhibited the best performance as a counter electrode for tri-iodide reduction. The ability to modulate catalytic activity of PEDOT with changes in conductivity shows one of promising routes for developing new counter electrode of Pt-free DSSCs.

Polypyrrole Film Studied by Three-Parameter Ellipsometry

  • 김동래;이덕환;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.707-712
    • /
    • 1996
  • Growth and changes of electronically conducting polypyrrole (PPy) in the form of thin films polymerized on metal electrodes were investigated by electrochemical and in situ three-parameter ellipsometry methods at the wavelength of 632.8 nm. Although the optical equations produced multiple sets of solution, it was possible to determine a unique set of thickness and the optical constants of a film by auxiliary measurements and/or physical reasoning. The changes in the thickness and the optical properties of the polymers during polymerization and electrochemical oxidation/reduction was successfully followed by the three-parameter ellipsometric technique. The optical properties of the polymers continuously changed as the film grew. The imaginary part of the refractive index of polypyrrole seemed to be dominantly determined by the existence of an absorption band around the visible range.

Embargo Nature of CuO-PANI Composite Against Corrosion of Mild Steel in Low pH Medium

  • Selvaraj, P. Kamatchi;Sivakumar, S.;Selvaraj, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • Incorporation of CuO nanoparticles during the polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidizing agent and sodium salt of dodecylbenzene sulphonic acid as dopant as well as surfactant yielded water soluble CuO-PANI composite. Comparison of recorded spectra like FTIR, XRD and SEM with reported one confirm the formation of the composite. Analysis by gravimetric method exposes that the synthesized composite is having resistivity against corrosion, with slight variation in efficiency on extending the time duration up to eight hours in strong acidic condition. OCP measurement, potentiodynamic polarization and EIS studies also confirms the suppression ability of composite against corrosion. Riskless working environment could be provided by the synthesized composite during industrial cleaning process.

Synthesis and Properties of Ionic Polyacetylene Composite from the In-situ Quaternization Polymerization of 2-Ethynylpyridine Using Iron (III) Chloride (염화 철(III)을 이용한 2-에티닐피리딘의 in-situ4차염화중합을 통한 이온형 폴리아세틸렌 복합체의 합성과 특성)

  • Taehyoung Kim;Sung-Ho Jin;Jongwook Park;Yeong-Soon Gal
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.296-302
    • /
    • 2024
  • An ionic conjugated polymer-iron (III) chloride composite was prepared via in-situ quaternization polymerization of 2-ethynylpyridine (2EP) using iron (III) chloride. Various instrumental methods revealed that the chemical structure of the resulting conjugated polymer (P2EP)-iron (III) chloride composite has the conjugated backbone system having the designed pyridinium ferric chloride complexes. The polymerization mechanism was assumed to be that the activated triple bond of 2-ethynylpyridinium salt, formed at the first reaction step, is easily susceptible to the step-wise polymerization, followed by the same propagation step that contains the propagating macroanion and monomeric 2-ethynylpyridinium salts. The electro-optical and electrochemical properties of the P2EP-FeCl3 composite were studied. In the UV-visible spectra of P2EP-FeCl3 composite, the absorption maximum values were 480 nm and 533 nm, and the PL maximum value was 598 nm. The cyclic voltammograms of the P2EP-FeCl3 composite exhibited irreversible electrochemical behavior between the oxidation and reduction peaks. The kinetics of the redox process of composites were found to be very close to a diffusion-controlled process from the plot of the oxidation current density versus the scan rate.

Capacitance Properties of the Polypyrrole Films Electropolymerized in Different Electrolyte Solutions (전해 중합에 따른 폴리피롤 필름의 캐페시턴스 특성)

  • Park Ho Chul;Noh Kun Ae;Kim Jong Huy;Ko Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.94-97
    • /
    • 2001
  • Electro-conducting Polypyrrole(PPy) films were Prepared by applying constant current in various electrolytes solutions and their capacitance properties were investigated using cyclic voltammetry. Capacitance values were strongly dependent on the electrolytes solution used in electrochemical polymerization. PPy prepared in PC/AN mixture solution containing 0.5M $LiClO_4$ with small amount water showed 401 F/g and that electrogenerated in $AN/H_2O$ mixture solution containing 0.5M $LiClO_4$ retained $70\%$ of initial capacitance after 2000 cycles.

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Determination of Hydrogen Peroxide on Modified Glassy Carbon Electrode by Polytetrakis(2-aminophenyl)porphyrin Nanowire

  • Jeong, Hae-Sang;Kim, Song-Mi;Seol, Hee-Jin;You, Jung-Min;Jeong, Eun-Seon;Kim, Seul-Ki;Seol, Kyung-Sik;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2979-2983
    • /
    • 2009
  • Nanowires of polytetrakis(o-aminophenyl)porphyrin (PTAPPNW) were fabricated by electrochemical polymerization with the cyclic voltammetric method in anodic aluminum oxide (AAO) membranes. The glassy carbon electrode (GCE) modified by PTAPPNW, single-walled carbon nanotubes (SWNT) and Nafion as a binder was investigated with voltammetric methods in a phosphate buffer saline (PBS) solution at pH 7.4. The PTAPPNW + SWNT + Nafion/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide ($H_2O_2$), which shortened the response time and enhanced the sensitivity for $H_2O_2$ determination at an applied potential of 0.0 V by amperometric method. The PTAPPNW + SWNT + Nafion/GCE can be used to monitor $H_2O_2$ at very low concentrations in biological pH as an efficient electrochemical $H_2O_2$ sensor.

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin;Piao, Hushan;Son, Yongkeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

Synthesis and Electrochemical Properties of Solid Polymer Electrolytes Using BF3LiMA as Monomer (BF3LiMA를 단량체로 하는 고체 고분자전해질 합성과 전기화학적 특성)

  • Kim, Kyung-Chan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.208-213
    • /
    • 2011
  • Solid polymer electrolytes using $BF_3LiMA$ as monomer were synthesized by usual one step radical polymerization in THF solvent. The effect of $BF_3LiMA$ concentration on ionic conductivity and electrochemical stability was investigated by AC impedance measurement and linear sweep voltammetry. As a result, the highest ionic conductivity reached $7.71{\times}10^{-6}S\;cm^{-1}$ at $25^{\circ}C$ was obtained in 12.9 wt% of $BF_3LiMA$ content. Further increase or decrease of $BF_3LiMA$ content result to decrease the ionic conductivity due to the brittle matrix properties in former case and the insufficient number of charge carrier in the latter case. Furthermore, since the counter-anion was immobilized in the self-doped solid polymer electrolytes, high electrochemical stability up to 6.0 V was observed even in $60^{\circ}C$.