• Title/Summary/Keyword: Electrochemical oxidation

Search Result 685, Processing Time 0.027 seconds

Characterization of Electro-Polymerized Polyaniline Film on the Cold Rolled Sheet in the Oxalic acid and Sodium Molybdate Electrolyte (옥살산과 몰리브덴산나트륨 전해액에서 냉연강판에 전해중합된 폴리아닐린 피막의 특성)

  • Lim, Ki-Young;Yoon, Jeong-Mo;Ki, Joon-Seo;Jang, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.386-393
    • /
    • 2006
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as polyaniline. Polyaniline is a conductive polymer that is synthesized by oxidation polymerization, and the electrochemical and chemical polymerization are possible for the oxidation of aniline. Electrochemical oxidation polymerization produces a fine surface and although voltage control is more convenient, it require electrolytic cells, and elaborate thin film can be acquired with the polymerization. Polyaniline films were electro-polymerized on cold rolled sheets using the galvanostat mode in the oxalic acidaniline-sodium molybdate electrolyte. The structure and properties of polyaniline film were studied using Potentiostat/Galvanostat 263A, FE-SEM,, AFM, SST, Colorimetry. A high corrosion resistance of polyaniline film was observed with an increase of corrosion potential by $500{\sim}600$ mV for the substrate covered with polyaniline.

Electrochemistry of Gallium

  • Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • Gallium is an important element in the production of a variety of compound semiconductors for optoelectronic devices. Gallium has a low melting point and is easily oxidized to give oxides of different compositions that depend on the conditions of solutions containing Ga. Gallium electrode reaction is highly irreversible in acidic media at the dropping mercury electrode. The passive film on a gallium surface is formed during anodic oxidation of gallium metal in alkaline media. Besides, some results in published reports have not been consistent and reproducible. An increase in the demand of intermetallic compounds and semiconductors containing gallium gives rise to studies on electrosynthesis of them and an increase of gallium concentration in the environment with various application of gallium causes the development of electroanalysis tools of Ga. It is required to understand the electrochemistry of Ga and to predict the electrochemical behavior of Ga to meet these needs. Any review papers related to the electrochemistry of gallium have not been published since 1978, when the review on the subject was published by Popova et al. In this study, the redox behavior, anodic oxidation, and electrodeposition of gallium, and trace determination of gallium by stripping voltammetries will be reviewed.

Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor (산화처리 탄소 및 이를 이용한 EDLC 특성)

  • Yang, Sun-Hye;Kim, Ick-Jun;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok;Lee, Yun-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.502-507
    • /
    • 2007
  • The oxidation treatment of several carbon materials with a sodium chlorate and 70 wt.% of nitric acid, combined with heat treatment, were attempted to achieve an electrochemical active material with a larger capacitance. Among pitch, needle coke, calcinated needle coke and natural graphite, the structure of needle coke and calacinated needle coke were changed to the graphite oxide structure with the expansion of the inter-layer. On the other hand, the calcinated needle coke after oxidation and heating at $200^{\circ}C$ has exhibited largest capacitance per weight and volume of 29.5 F/g and 24.5 F/ml at the two-electrode system in the potential range of 0 to 2.5 V. The electrochemical performance of the calcinated needle coke was discussed with the phenomenon of the electric field activation and the formation of new pores between the expanded inter-layer at first charge.

Substituent Effects and Correlations of Electrochemical Behaviors with Molecular Orbital Calculation of Thioxantone DerivativesⅠ

  • 곽경도;서무룡;하광수;백우현
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.527-530
    • /
    • 1998
  • This paper presents the electrochemistry and molecular orbital (MO) picture of a series of conformationally-restricted thioxantone derivatives. A series of $C_2-substituted$ thioxanthones were examined to probe the electronic influence of the substituent on the electrooxidation and electroreduction sites (i.e., on the electron densities at the 10-and 9-positions), respectively. In the presence of "electrophoric" groups such as C=O and S, characteristic electrochemical reduction and oxidation responses are observed. The electrochemical reaction was diffusion-controlled, because the $I_p/{\upsilon}^{1/2}$ ratio was constant for the anodic and cathodic wave of thioxantone derivatives. These substituent effects are presented in terms of correlations of oxidation (or reduction) potentials with the highest occupied molecular orbital (HOMO), or lowest unoccupied molecular orbital (LUMO) energies, respectively. There is good correlation between energies of the HOMO vs. $E_{pa}^{(+)}$ and energies of the LUMO vs. $E_{pc}^{(-)}$. Frontier Molecular Orbital (FMO) is changed by the functional group of thioxanthones. FMO energy level was offered us the information about the electron transfer direction, and the coefficient of FMO was offered the information about the electron transfer position. Sulfur atom has an important effect on oxidation potential, $E_{pa}^{(+)}$ and the carbonyl carbon has an important effect on reduction potential, $E_{pc}^{(-)}$. Therefore we were appreciated that the contribution of sulfur atom for the $E_{pa}^{(+)}$ and HOMO energies is larger than the contribution of carbonyl group for the $E_{pc}^{(-)}$ and LUMO energies.

Corrosion behaviors of plasma electrolytic oxidation (PEO) treated high-silicon aluminum alloys

  • Park, Deok-Yong;Chang, Chong-Hyun;Oh, Yong-Jun;Myung, Nosang V.;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.143-155
    • /
    • 2022
  • Ceramic oxide layers successfully were formed on the surface of cast Al alloys with high Si contents using plasma electrolytic oxidation (PEO) process in electrolytes containing Na2SiO3, NaOH, and additives. The microstructure of the oxide layers was systematically analyzed using scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (TEM), X-ray diffraction patterns (XRD), and energy X-ray dispersive spectroscopy (EDS). XRD analysis indicated that the PEO untreated high-silicon Al alloys (i.e., 17.1 and 11.7 wt.% Si) consist of Al, Si and Al2Cu phases whereas Al2Cu phase selectively disappeared after PEO treatment. PEO process yielded an amorphous oxide layer with few second phases including γ-Al2O3 and Fe-rich phases. The corrosion behaviors of high-silicon Al alloys treated by PEO process were investigated using electrochemical impedance spectroscopy (EIS) and other electrochemical techniques (i.e., open circuit potential and polarization curve). Electroanalytical studies indicated that high-silicon Al alloys treated by PEO process have greater corrosion resistance than high-silicon alloys untreated by PEO process.

Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode

  • Koh, Ahyeon;Lee, Junghyun;Song, Jieun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Chemically amplified electrochemical detection, redox-active probe being amplified its electrochemical anodic current by a sacrificial electron donor presenting in solution, holds great potential for simple and quantitative bioanalytical analysis. Herein, we report the chemically amplified electrochemical analysis that drastically enhanced a detection of ferrocenemethanol (analyte) by ferrocyanide (chemical amplifier) on 4-nitrophenyl grafted glassy carbon electrodes at $60^{\circ}C$. The glassy carbon electrode grafted with a 4-nitrophenyl group using an electrochemical reduction suppressed the oxidation of ferrocyanide and thus enabled detection of ferrocenemethanol with excellent selectivity. The ferrocenemethanol was detected down to an nM range using a linear sweep voltammetry under kinetically optimized conditions. The detection limit was improved by decreasing the concentration of the ferrocyanide and increasing temperature.

Enhanced Electrocatalytic Activity of Low Ni Content Nano Structured NiPd Electrocatalysts Prepared by Electrodeposition Method for Borohydride Oxidation

  • Zolfaghari, Mahdieh;Arab, Ali;Asghari, Alireza
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.238-247
    • /
    • 2020
  • Some nano structured bimetallic NiPd electrocatalysts were electrodeposited on glassy carbon electrodes using a double potential step chronoamperometry. The morphology of the electrodeposited samples was investigated by field emission-scanning electron microscopy, while their compositions were evaluated using energy dispersive X-ray spectroscopy. It was observed that the electrodeposited samples contained a low Ni content, in the range of 0.80 - 7.10%. The electrodeposited samples were employed as the anode electro-catalysts for the oxidation of sodium borohydride in NaOH solution (1.0 M) using cyclic voltammetry, chronoamperometry, rotating disk electrode, and impedance spectroscopy. The number of exchanged electrons, charge transfer resistances, apparent rate constants, and double layer capacitances were calculated for the oxidation of borohydride on the prepared catalysts. According to the results obtained, the NiPd-2 sample with the lowest Ni content (0.80%), presented the highest catalytic activity for borohydride oxidation compared with the other NiPd samples as well as the pure Pd sample. The anodic peak current density was obtained to be about 1.3 times higher on the NiPd-2 sample compared with that for the Pd sample.

Electrochemical Studies on Heptamethine Cyanine Dyes

  • Kim, Young-Sung;Shin, Jong-Il;Park, Soo-Youl;Jun, Kun;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.35-40
    • /
    • 2009
  • Computational calculations of molecular orbital and electrochemical redox/oxidation potentials are of very importance to determine the compound properties. The energy levels of molecular orbital were calculated by the density function theory (DFT) with exchange correction functional of local density approximation (LSA) based on the Perdew-Wang (PWC) setting and cyclic voltammetry.

Degradation of Trichloroethylene in Aqueous Phase by Electrochemical Ferrate(VI) (전기화학적 합성 Ferrate(VI)를 이용한 수중 Trichloroethylene 분해특성 연구)

  • Nam, Ju-Hee;Kwon, Byung-Hyuk;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.453-461
    • /
    • 2012
  • The degradation characteristics of TCE by Ferrate(VI) oxidation have been studied. Ferrate(VI) were prepared by electrochemical method. The degradation efficiency of TCE in aqueous solution was investigated at various pH values, Ferrate(VI) doses and aqueous solution temperature values. GC-ECD was used to analyze TCE. TCE was degraded rapidly by ferrate(VI) in aqueous solution, Also, the experimental results showed that TCE removal efficiency increased with the increase of Ferrate(VI) doses. The effect of pH was investigated and the maximum degradation efficiency was obtained at pH 7. And intermediate products were identified by GC-MS techniques. Ethyl Chloride, Dichloroethylene, Chloroform, 1,1-dichloropropene, Trichloroacetic acid and Trichloroethane were identified as a reaction intermediate, and $Cl^-$ was identified as an end product.

Facile Synthesis of Hollow CuO/MWCNT Composites by Infiltration-Reduction-Oxidation Method as High Performance Lithium-ion Battery Anodes

  • Zheng, Gang;Li, Zhiang;Lu, Jinhua;Zhang, Jinhua;Chen, Long;Yang, Maoping
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Hollow copper oxide/multi-walled carbon nanotubes (CuO/MWCNT) composites were fabricated via an optimized infiltration-reduction-oxidation method, which is more facile and easy to control. The crystalline structure and morphology were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The as-prepared CuO/MWCNT composites deliver an initial capacity of 612.3 mAh·g-1 and with 80% capacity retention (488.2 mAh·g-1) after 100 cycles at a current rate of 0.2 A·g-1. The enhanced electrochemical performance is ascribed to the better electrical conductivity of MWCNT, the hollow structure of CuO particles, and the flexible structure of the CuO/MWCNT composites.