• Title/Summary/Keyword: Electrochemical machining

Search Result 123, Processing Time 0.05 seconds

Study on Machining Speed according to Parameters in Micro ECM (가공 인자에 다른 미세 전해 가공 속도 변화 연구)

  • Kwon, Min-Ho;Park, Min-Soo;Shin, Hong-Shik;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2011
  • In micro electrochemical machining (micro ECM), machining conditions have been determined to maintain a small side gap and to machine a workpiece stably However, machining speed is slow. To improve machining speed while maintaining the form accuracy, the paper investigates machining parameters such as pulse amplitude, duty ratio, pulse on-time, and the electrolyte's temperature and concentration. The experiment in this study shows that the electrolyte's concentration is the key factor that can reduce machining time while maintaining the form accuracy Micro square columns were fabricated to confirm the machining parameters' effects.

An Experimental Study on the Improvement of Microscopic Machinability of Glass using the Discharging Peak Control Techniques in the Electrochemical Discharge Machining Technologies

  • Chang, In-Bae;Kim, Nam-Hyeock;Kim, Byeong-Hee;Kim, Heon-Young
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.315-316
    • /
    • 2002
  • Electrochemical discharge machining is a very recent technique for non-conducting materials such as ceramics and glasses. ECDM is conducted in the NaOH solution and the cathode electrode is separated from the solution by $H_2$ gas bubble. Then the discharge is appeared and the non-conductive material is removed by spark and some chemical reactions. In the ECDM technology, the $H_2$ bubble control is the most important factor to stabilize the discharging condition. In this paper, we proposed the discharge peak monitoring/ discharging duty feedback algorithms for the discharge stabilization and the feasibility of this algorithm is verified by various pattern machining in the constant preload conditions for the cathode electrode.

  • PDF

An Experimental Study on the Improvement of Microscopic Machinability of Glass using the Discharging Peak Control Techniques in the Electrochemical Discharge Machining Technologies

  • Chang, In-Bae;Kim, Nam-Hyeock;Kim, Byeong-Hee;Kim, Heon-Young
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.95-100
    • /
    • 2002
  • Electrochemical discharge machining is a very recent technique for non-conducting materials such as ceramics and glasses. ECDM is conducted in the NaOH solution and the cathode electrode is separated from the solution by H$_2$ gas bubble. Then the discharge is appeared and the non-conductive material is removed by spark and some chemical reactions. In the ECDM technology, the H$_2$ bubble control is the most important factor to stabilize the discharging condition. In this paper we proposed the discharge peak monitoring/discharging duty feedback algorithms fur the discharge stabilization and the feasibility of this algorithm is verified by various pattern machining in the constant preload conditions for the cathode electrode.

Fabrication of Tungsten Carbide Microshaft Using Electrochemical Machining (전해 가공을 이용한 텅스텐 카바이드 미세축 제작)

  • Kang, Myung-Ju;Oh, Young-Tak;Chu, chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.80-87
    • /
    • 2002
  • Tungsten carbide microshaft is used as micro-punch, electrode of MEDM (micro-electro-discharge machining), and micro-tool because it has high hardness and high rigidity. In this study, the tungsten carbide microshaft was fabricated using electrochemical machining. Concentration of material removal at the sharp edge and metal corrosion layer affect the shape of the microshaft. Control of microshaft shape was possib1e through conditioning the machining voltage and electrolyte concentration. By applying periodic voltage, material removal rate increased and surface roughness improved. The fabricated microshaft in $H_2 SO_4$ electrolyte maintained sharper end edge and better surface finish than those fabricated by other electrolytes.

Micro Electrochemical Machining Characteristics and Shape Memory Effect in Ni-Ti SMA (Ni-Ti SMA의 미세 전해가공특성과 형상기억효과)

  • 김동환;박규열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • In this study, micro electrochemical machining method was introduced for accomplishment the fabrication technology of functional parts and smart structures using the Ni-Ti shape memory alloy. From the experimental result, the micro part which has very fine surface could be achieved by use of micro electrochemical process with point electrode method. Concretely, the optimal performance of micro electrochemical process in Ni-Ti SMA was obtained at the condition of approximately 100% of current efficiency and high frequency pulse current. That is, much finer surface integrity and shape memory effect can be obtained at the same condition mentioned above.

Micro Electrochemical Machining of Stainless Steel Using Citric Acid (구연산을 이용한 스테인레스 스틸의 미세 전해가공)

  • Ryu, Shi-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.134-140
    • /
    • 2008
  • Micro electrochemical machining (ECM) is conducted on stainless steel 304 using non-toxic electrolyte of citric acid. Electrochemical dissolution region is minimized by applying a few hundred second duration pulses between the tungsten SPM tip and the work material. ECM characteristics according to citric acid concentration, feeding velocity and electric conditions such as pulse amplitude, pulse frequency, and offset voltage are investigated through a series of experiments. Micro holes of $60{\mu}m$ in diameter with the depth of $50{\mu}m$ and $90{\mu}m$ in diameter with the depth of $100{\mu}m$ are perforated. Square and circular micro cavities are also manufactured by electrochemical milling. This research can contribute to the development of safe and environmentally friendly micro ECM process.

Micro Mold Machining Using EDM/ECM (방전/전해 가공을 이용한 미세금형가공)

  • Chung, D.K.;Shin, H.S.;Choi, S.H.;Kim, B.H.;Chu, C.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.75-78
    • /
    • 2007
  • Recently, the need for micro mold or micro mechanical parts has been rapidly increased. As feature size decreases, conventional machining processes show their limitation. Micro electrical discharging machining (EDM) and electrochemical machining (ECM) have many advantages in micro machining. They can be used to make structures of micro scale, or even nano scale size. In this paper, the application of micro EDM and ECM has been investigated.

  • PDF

A study on the Ultra precision ECM for Dynamic bearing (Dynamic Bearing의 초정밀 ECM 가공 특성에 관한 연구)

  • 신현정;김영민;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.151-154
    • /
    • 2002
  • In this paper a mathematical model, the results of computer simulation and exprimental investigations of electrochemical machining with a too-electrode are presented. The experimental investigations were carried out in order to evaluate the influence of working voltage, initial interelectrode gap size, and metal remove rate. Accuracy of computer simulation evaluated by differences between results of experimental test and computer simulation depends on electrochemical machining coefficient, total overpotential of electrode process, current density, electrical conductivity of electrolyte, and etc. Metal removal rate would be predicted by the simulation of ECM process.

  • PDF