• Title/Summary/Keyword: Electrochemical Impedance spectroscopy

Search Result 551, Processing Time 0.029 seconds

Growth Kinetics and Electronic Properties of Passive Film of Cobalt in Borate Buffer Solution (Borate 완충용액에서 코발트 산화피막의 생성 과정과 전기적 성질)

  • Park, Hyunsung;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.320-327
    • /
    • 2017
  • In a borate buffer solution, the growth kinetics and the electronic properties of passive film on cobalt were investigated, using the potentiodynamic method, chronoamperometry, and single-frequency electrochemical impedance spectroscopy. It was found out that the unstable passive film ($Co(OH)_2$) and CoO of Co formed in the low electrode potential changes to $Co_3O_4$ and CoOOH while the electrode potential increases. And the composition of the passive films was varied against the applied potential and oxidation time. The oxide film formed during the passivation process of cobalt has showed the electronic properties of p-type semiconductor, which follow from the Mott-Schottky equation.

Corrosion Protection from Inhibitors and Inhibitor Combinations Delivered by Synthetic Ion Exchange Compound Pigments in Organic Coatings

  • Chrisanti, S.;Ralston, K.A.;Buchheit, R.G.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.212-218
    • /
    • 2008
  • Inorganic ion exchange compounds (IECs) including hydrotalcites and bentonite clays are a well known classes of layered mixed metal hydroxides or silicates that demonstrate ion exchange properties. These compounds have a range of applications from water purification to catalyst supports. The use of synthetic versions of these compounds as environmentally friendly additives to paints for storage and release of inhibitors is a new and emerging application. In this paper, the general concept of storage and release of inhibiting ions from IEC-based particulate pigments added to organic coatings is presented. The unique aspects of the IEC structure and the ion exchange phenomenon that form the basis of the storage and release characteristic are illustrated in two examples comprising an anion exchanging hydrotalcite compound and a cation exchanging bentonite compound. Examples of the levels of corrosion protection imparted by use of these types of pigments in organic coatings applied to aluminum alloy substrates is shown. How corrosion inhibition translates to corrosion protection during accelerated exposure testing by organic coatings containing these compounds is also presented.

Corrosion Behavior of Hard Coated Ti-Zr-N Film on the Tool Steels

  • Eun, Sang-Won;Choe, Han-Cheol
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • To investigate the corrosion behavior of tools steel surface in various coating film, the surface of hard coated Ti-Zr-N film on the tool steel by using magnetron-sputtering methods was researched using various experimental methods. STD 61 steels were manufactured by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Steel surface was coated with Ti-Zr-N film at $150^{\circ}C$ and 100W for 1h by using DC-sputtering equipment. Surface characteristics of Ti-Zr-N film coated specimens were investigated by OM, XRD, FE-SEM and nano-scratch tester. And corrosion behaviors of the coated specimen were investigated by polarization test and electrochemical impedance spectroscopy(EG&G Co, PARSTAT 2273. USA). It was found that Ti-Zr-N film coated sample had a thick coated layer and showed a good wear resistance and corrosion resistance of surface compared with ZrN and TiN coated sample. The corrosion resistance and mechanical property of Ti-Zr-N film coated STD 61 alloy increased as sputtering time increased.

Effect of octadecylamine concentration on adsorption on carbon steel surface

  • Liu, Canshuai;Lin, Genxian;Sun, Yun;Lu, Jundong;Fang, Jun;Yu, Chun;Chi, Lisheng;Sun, Ke
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2394-2401
    • /
    • 2020
  • Octadecylamine is an effective film-forming amine that protects carbon steel from corrosion. In the present study, the effect of octadecylamine concentration on adsorption on a carbon steel surface was investigated in anaerobic alkaline solution by using SEM/EDS, TEM and the Materials Studio simulation techniques. TEM morphology observation and EDS elemental detection determine the thicknesses of octadecylamine film on a carbon steel surface, which are confirmed by the in-situ electrochemical impedance spectroscopy measurement and resistance calculation. The Materials Studio simulation reveals the number of octadecylamine film layers at different concentrations. Results obtained in this study indicate that adsorption of octadecylamine film on carbon steel proceeds with the multi-layer adsorption mechanism.

Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method (Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발)

  • Lee, Young-Hyun;Yoo, Seungyeol;Kim, Jonghyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.

Electrochemical Properties of $LiFePO_4$ Cathode Materials by Hydrothermal Method (수열법을 이용한 $LiFePO_4$의 전기화학적 특성)

  • Jin, En-Mei;Jun, Dea-Gue;Han, Zhen-Ji;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Park, Bok-Kee;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.384-385
    • /
    • 2006
  • Olivine $LiFePO_4$ cathode materials were synthesized by hydrothermal reaction, and coated by carbon black. The powders were characterized by the X-ray diffraction. $LiFePO_4$/Li cells were characterized electrochemically by charge/discharge experiments and ac impedance spectroscopy. The result showed the discharge capacity of $LiFePO_4$/Li cell was 133 mAh/g at the first cycle, and 128 mAh/g at the 30th cycle, respectively.

  • PDF

Effects of surface modification of $Nafion^{(R)}$ Membrane on the Fuel Cell Performance

  • Prasanna, M.;Cho, E.A.;Ha, H.Y.;Hong, S.A.;Oh, I.H.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.11a
    • /
    • pp.133-138
    • /
    • 2004
  • Proton exchange membrane fuel cell (PEMFC) is considered as a clean and efficient energy conversion det ice for mobile and stationary applications. Anions all the components of the PEMFC, the interface between the electrolyte ,and electrode catalyst plays an important role in determining tile cell performance since the electrochemical reactions take place at the interface in contact with tile reactant gases. Therefore, to increase the interface area and obtain a high-performance PEMFC, surface of the electrolyte membrane was roughened by Ar$^{+}$ beam bombardment. The results imply that by modifying surface of the electrolyte membrane, platinum loading can be reduced significantly without performance loss. To optimize the surface treatment condition, effects of ion dose density on characteristics of the membrane/electrode interface were examined by measuring the cell performance, impedance spectroscopy, and cyclic voltammograms. Surface of the modified membranes were characterized using scanning electron microscopy and FT-IR.R.

  • PDF

Effects of Adding Mg to AlSi Coating for Hot Stamping Steel (자동차용 핫스탬핑 AlSi 도금중 Mg 첨가효과)

  • Yang, Wonseog;Lee, Jeamin;Kim, Changkyu;Ahn, Seungho;Castaneda, Homero
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.196-203
    • /
    • 2021
  • To improve corrosion resistance and reduce the hydrogen uptake of 22MnB5, up to 5% Mg was added to the AlSi coating of 22MnB5. After hot-stamping and electrocoating were done on the metallic-coated specimen, the surface characteristics of the steel, hydrogen uptake content, and corrosion resistance were examined by transmittance electron microscopy, thermal desorption spectrometry, cyclic corrosion testing, and electrochemical impedance spectroscopy. Mg was investigated as MgO on the surface layer after hot-stamping while it existed as Mg2Si before hot-stamping. The total hydrogen content of 22MnB5 was decreased along with the Mg content. However, there was no difference at 0.2 wt% or more. When a small amount of Mg was added, the coating corrosion resistance was decreased, but when it was added at around 1.0 wt%, the greatest corrosion resistance increase was seen. However, when 3 wt% or more was added excessively, the corrosion resistance was decreased. MgO on the surface was considered to suppress H uptake by the AlSi melting solution and increase the barrier effect of the coating.

Anticorrosive Coating Material with Dual Self-healing Capability for Steel Coating (이중 자기치유 메커니즘을 통한 강판의 내부식성 코팅)

  • Lee, Hyang Moo;Yun, Sumin;Kim, Jin Chul;Cho, Soo Hyoun;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2021
  • Steel plates coated by self-healable polymer still can be rusted since it takes time to be healed. In this study, dual self-healing coating material is developed using corrosion inhibitor (DTBEDA) which can form hindered urea (HUB) as reversible cross-linking bond at the same time. Developed dual self-healing polymer is coated on steel plate, and scratch healing property was investigated by surgical blades and nano/micro indentation tester. The anticorrosion effect of DTBEDA was investigated by electrochemical impedance spectroscopy (EIS).

Effect of Sintering Process with Co3O4 on the Performance of LSCF-Based Cathodes for Solid Oxide Fuel Cells

  • Khurana, Sanchit;Johnson, Sean;Karimaghaloo, Alireza;Lee, Min Hwan
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.637-642
    • /
    • 2018
  • The impact of the sintering process, especially in terms of sintering temperature and sintering aid concentration, on the ohmic transport and electrode performance of $(La_{0.80}Sr_{0.20})_{0.95}CoO_{3-{\delta}}$-gadolinia-doped ceria (LSCF-GDC) cathodes is studied. The ohmic and charge-transfer kinetics exhibit a highly coupled $Co_3O_4$ concentration dependency, showing the best performances at an optimum range of 4-5 wt%. This is ascribed to small grain sizes and improved connection between particles. The addition of $Co_3O_4$ was also found to have a dominant impact on charge-transfer kinetics in the LSCF-GDC composite layer and a moderate impact on the electronic transport in the current-collecting LSCF layer. Care should be taken to avoid a formation of excessive thermal stresses between layers when adding $Co_3O_4$.