• Title/Summary/Keyword: Electrochemical Detection

Search Result 340, Processing Time 0.024 seconds

A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine

  • Ozer, Tugba;Isildak, Ibrahim
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • A new miniaturized all solid-state contact Fe (III)-selective PVC membrane electrode based on Fe (II) phthalocyanine as a neutral carrier was described. The effects of the membrane composition and foreign ions on the electrode performance was investigated. The best performance was obtained with a membrane containing 32% poly (vinyl chloride), 64% dioctylsebacate, 3% Fe (II) phthalocyanine, and 1% potassium tetrakis (p-chlorophenyl) borate. The electrode showed near Nernstian response of $26.04{\pm}0.95mV/decade$ over the wide linear concentration range $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}M$, and a very low limit of detection $1.8{\pm}0.5{\times}10^{-7}M$. The potentiometric response of the developed electrode was independent at pH 3.5-5.7. The lifetime of the electrode was approximately 3 months and the response time was very short (< 7 s). It exhibited excellent selectivity towards Fe (III) over various cations. The miniaturized all solid-state contact Fe (III)-selective membrane electrode was successfully applied as an indicator electrode for the potentiometric titration of $1.0{\times}10^{-3}M$ Fe (III) ions with a $1.0{\times}10^{-2}M$ EDTA and the direct determination of Fe (III) ions in real water samples.

Electroanalytical Determination of Copper(II) Ions Using a Polymer Membrane Sensor

  • Oguz Ozbek;Meliha Burcu Gurdere;Caglar Berkel;Omer Isildak
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2023
  • In this study, a new potentiometric sensor selective to copper(II) ions was developed and characterized. The developed sensor has a polymeric membrane and contains 4.0% electroactive material (ionophore), 33.0% poly(vinyl chloride) (PVC), 63.0% bis(2-ethylhexyl)sebacate (BEHS) and 1.0% potassium tetrakis(p-chlorophenyl)borate (KTpClPB). This novel copper(II)-selective sensor exhibits a Nernstian response over a wide concentration range from 1.0×10-6 to 1.0×10-1 mol L-1 with a slope of 29.6 (±1.2) mV decade-1, and a lower detection limit of 8.75×10-7 mol L-1. The sensor, which was produced economically by synthesizing the ionophore in the laboratory, has a good selectivity and repeatability, fast response time and stable potentiometric behaviour. The potential response of the sensor remains unaffected of pH in the range of 5.0-10.0. Based on the analytical applications of the sensor, we showed that it can be used as an indicator electrode in the quantification of Cu2+ ions by potentiometric titration against EDTA, and can also be successfully utilized for the determination of copper(II) ions in different real samples.

Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide (쑥을 이용한 과산화수소 정량 바이오센서의 전기화학적 성질)

  • Lee, Beom-Gyu;Park, Sung-Woo;Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • A mugwort-tissue-based modified carbon paste electrode was constructed for the amperometric detection of hydrogen peroxide and its electrochemical properties are described. Especially the amperometric signal was very stable and bigger than any other enzyme electrode studied in this lab. The effect of tissue composition on the response was linear within the wide range of experiment and the linearity of Lineweaver-Burk plot showed that the sensing process of the biosensor is by enzymatic catalysis. And pH dependent current profile connoted that two isozymes are active in this system.

Electrochemical Monitoring of NADH Redox with NPQD-modified Electrodes for Cell Viability Assessment

  • JuKyung Lee;Hye Bin Park;Chae Won Seo;Chae Won Seo;SangHee Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.412-417
    • /
    • 2023
  • There is increasing interest in the rapid and highly sensitive monitoring of cell viability in biological and toxicological research. Conventional methods depend on optical assays using Water Soluble Tetrazolium-8 (WST-8) or 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, which requires a large volume of samples and special instruments, necessitating shipment of clinical samples to laboratories. This paper reports on the development of a rapid and sensitive electrochemical (EC) sensor using screen printed electrode (SPE) and surface modification using 4'-mercapto-N-phenylquinone diamine (4'-NPQD), as double electron mediators, for monitoring cell viability via the measurement of nicotinamide adenine dinucleotide (NADH). We used the sensor to observe the viability of MCF-7 and doxorubicin (Dox)-treated cells. The oxidation current of NADH was measured via chronoamperometry (CA), and the EC results showed a good linear relationship when compared with NADH quantification using WST-8 assay. The analysis time was only 10 s and limit of detection (LOD) of NADH was 1.78 µM. Our EC method has the potential to replace conventional WST assays for cell viability and cytotoxicity experiments.

Paper-based Electrochemical Sensor Using a Self-operated Paper Pump (자발 구동형 종이 펌프를 이용한 종이 전기화학 센서)

  • Si Hiep Hua;Chikwan Kim;Duc Cuong Nguyen;Yong Shin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.158-164
    • /
    • 2024
  • We developed a self-operated paper pump that can maintain a nearly constant flow rate of an aqueous solution along a paper strip channel in paper-based analytical devices (PADs). The quasi-stationary flow rate was controlled by increasing the crosssectional channel area (capillary force) using a fan-shaped absorption pad coupled with a paper strip channel. The flow rate is regulated by varying the fan angle of the circular absorbing pad. Furthermore, the flow rate can be increased by furnishing a hollow cavity at the center of a conventional paper strip channel. The rate was regulated by varying the length of the hollow paper channel in the flow rate range of 5.1-26.4 mm/min. As a preliminary work, a paper-pump-coupled PAD was fabricated, and its CV detection capability was evaluated for the redox reaction of Fe(CN)6+4/+3. The combination of a paper pump with a PAD resulted in an ideal CV curve with a higher limiting current and faster response time. These results are interpreted well by the Levich equation, which suggests that the paper pump is a very useful component in paper-based sensors.

Electrochemical Characteristics of CNT/TiO2 Nanocomposites Electrodes for Cancer Cell Sensor (바이오 센서용 CNT/TiO2 나노 복합 전극의 전기화학적 특성)

  • Kim, Han-Joo;You, Sun-Kyung;Oh, Mi-Hyun;Shen, Qin;Wang, Xuemei;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.105-108
    • /
    • 2008
  • In the recent years, increasing interests are being focused on the rational functionalization of the CNTs by some creative methods. However, the considerable toxicity of CNT is still a controversialissue and limits its biological application. To improve the biocompatibility of CNT, in this work we prepared CNT-$TiO_2$ nanocomposites with CNT and organic titanium precursors. Our observations demonstratethat the modified interface could accelerate the heterogeneous electron transfer rates and thusenhance the relevant detection sensitivity, suggesting its potential application as the new strategy for the development of the biocompatible and multi-signal responsive biosensors for the early diagnosis of cancers.

Electrochemical Detection of $17{\beta}-estradiol$ by using DNA Aptamer Immobilized Nanowell Gold Electrodes

  • Kim, Yeon-Seok;Jung, Ho-Sup;Lee, Hea-Yeon;Kawai, Tomoji;Gu, Man-Bock
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.88-92
    • /
    • 2005
  • Aptamer is the single-stranded oligonucleotide which binds to various target molecules such as proteins, peptides, lipids and small organic molecules with high affinity and specificity. DNA aptamers specific for the $17{\beta}-estradiol$ were selected by SELEX (Systematic Evolution of Ligands by EXponential enrichment) process from a random DNA library. These DNA aptamers have a high affinity to $17{\beta}-estradiol$ as an endocrine disrupting chemical. Nanowell and $200{\mu}m$ gold electrode were used as substrate for DNA aptamer immobilization and electrochemical analysis. Especially, nanowell gold electrode was fabricated by e-beam lithography. The size of single nanowell is 130nm and 40,000 nanowells were deposited on one gold electrode. The immobilization method was based on the interaction between the biotinylated aptamer and streptavidin deposited on gold electrode previously. Immobilization procedure was optimized by surface plasma resonance (SPR) and electrochemical analysis. After the immobilization of DNA aptamer on streptavidin modified gold electrode, $17{\beta}-estradiol$ solution was treated on aptamer immobilized gold electrode. The current of gold electrode was decreased by the binding of $17{\beta}-estradiol$ to DNA aptamer immobilized on gold electrode. However, in negative control experiments of 1-aminoanthraquinone and 2-methoxynaphthalene, the current was rarely decreased. And more sensitive data was obtained from nanowell gold electrode comparing with $200{\mu}m$ gold electrode.

  • PDF

Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War

  • Ariani, Zahra;Honarmand, Ebrahim;Mostaanzadeh, Hossein;Motaghedifard, Mohammadhassan;Behpour, Mohsen
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • In this paper, for the first time, the electroanalytical study of Triethylenediamine, TEDA was done on a typically graphene modified carbon paste electrode (Gr/CPE) in pH=10.5 of phosphate buffer solutions (PBS). The surface morphology of the bare and modified electrodes was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electro-oxidation of TEDA was investigated at the surface of modified electrode. The results revealed that the oxidation peak current of TEDA at the surface of Gr/CPE is 2.70 times than that shown at bare-CPE. A linear calibration plot was observed in the range of 1.0 to 202.0 ppm. In this way, the detection limit was found to be 0.18 ppm. The method was then successfully applied to determination of TEDA in aqueous samples obtained from two kinds of activated carbon from the masks of war. On the other hand, density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the $pK_a$ values of TEDA. The energies of lowest unoccupied molecular orbital ($E_{LUMO}$) and highest occupied molecular orbital ($E_{HOMO}$), gap energy (${\Delta}E$) and some thermodynamic parameters such as Gibbs free energy of TEDA and its conjugate acid ($HT^+$) were calculated. The results of calculated $pK_a$ were found to be in good agreement with the experimental values.

Fabrication of Ultramicroelectrodes with Nanoporous Gold Structures by Potentiostatic Anodization (정전위 양극 산화에 의한 나노다공성 금 구조의 초미세 전극 제작)

  • Seoin, Shin;Siyeon, Lee;Jongwon, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.436-441
    • /
    • 2022
  • Because the nanoporous electrodes has large electrochemical surface areas, extensive studies have been focused on their fabrication methods. In this paper, a method for introducing a nanoporous gold (NPG) structure on the surface of an ultramicroelectrode (UME) using potentiostatic anodization was investigated. A well-defined NPG structure was introduced on the surface of the UME when a potential of 1.3 V was applied in 0.1 M phosphate buffer solution (pH 8) containing 1 M KCl. The anodic oxidation efficiency was investigated by observing the effect of the applied potential, the reaction time, and the size of the electrode on the roughness factor (Rf) of the prepared NPG-UMEs. In a short time of about 10 minutes, NPG-UME with a large Rf value of about 2000 could be prepared, which could be effectively used for electrochemical glucose detection. The results shown in this work are expected to have great applicability when performing electrochemical analysis with a small sample volume.

A Non-enzymatic Hydrogen Peroxide Sensor Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber Electrode (CuO Nanoparticles/polyaniline/CNT fiber 유연 전극 기반의 H2O2 검출용 비효소적 전기화학 센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.196-201
    • /
    • 2023
  • In this study, a CNT fiber flexible electrode grafted with CuO nanoparticles (CuO NPs) and polyaniline (PANI) was developed and applied to a nonenzymatic electrochemical sensor for H2O2 detection. CuO NPs/PANI/CNT fiber electrode was fabricated through the synthesis and deposition of PANI and CuO NPs on the CNT fiber surface using an electrochemical method. Surface morphology and elemental composition of the CuO NPs/PANI/CNT fiber electrode were characterized by scanning electron microscope with energy dispersive X-ray spectrometry. And its electrochemical characteristics were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). Compared with a bare CNT fiber as a control group, the CuO NPs/PANI/CNT fiber electrode showed a 4.78-fold increase in effective surface area and a 8.33-fold decrease in electron transfer resistance, which leads to excellent electrochemical properties such as a good electrical conductivity and an efficient electron transfer. These improved characteristics were due to the synergistic effect through the grafting of CNT fiber, PANI and CuO NPs. As a result, this electrode enhanced the H2O2 sensing performance.