• Title/Summary/Keyword: Electrochemical Corrosion Behavior

Search Result 300, Processing Time 0.022 seconds

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.

Modeling of the lifetime prediction of a 12-V automotive lead-acid battery (차량용 납축전지의 수명 예측 모델링)

  • Kim, Sung Tae;Lee, Jeongbin;Kim, Ui Seong;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.338-346
    • /
    • 2013
  • The conventional lead acid battery is optimized for cranking performance of engine. Recently electric devices and fuel economy technologies of battery have influenced more deep cycle of dynamic behavior of battery. I also causes to reduce battery life-time. This study proposed that aging battery model is focused for increasing of battery durability. The stress factors of battery aging consist of discharge rate, charging time, full charging time and temperature. This paper considers the electrochemical kinetics, the ionic species conservation, and electrode porosity. For prediction of battery life cycle we consider battery model containing strong impacts, corrosion of positive grid and shedding. Finally, we validated that modeling results were compared with the accelerated thermal measurement data.

The Effect of Inhibitors on the Electrochemical Deposition of Copper Through-silicon Via and its CMP Process Optimization

  • Lin, Paul-Chang;Xu, Jin-Hai;Lu, Hong-Liang;Zhang, David Wei;Li, Pei
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.319-325
    • /
    • 2017
  • Through silicon via (TSV) technology is extensively used in 3D IC integrations. The special structure of the TSV is realized by CMP (Chemically Mechanical Polishing) process with a high Cu removal rate and, low dishing, yielding fine topography without defects. In this study, we investigated the electrochemical behavior of copper slurries with various inhibitors in the Cu CMP process for advanced TSV applications. One of the slurries was carried out for the most promising process with a high removal rate (${\sim}18000{\AA}/Min$ @ 3 psi) and low dishing (${\sim}800{\AA}$), providing good microstructure. The effects of pH value and $H_2O_2$ concentration on the slurry corrosion potential and Cu static etching rate (SER) were also examined. The slurry formula with a pH of 6 and 2% $H_2O_2$, hadthe lowest SER (${\sim}75{\AA}/Min$) and was the best for TSV CMP. A novel Cu TSV CMP process was developed with two CMPs and an additional annealing step after some of the bulk Cu had been removed, effectively improving the condition of the TSV Cu surface and preventing the formation of crack defects by variations in wafer stress during TSV process integration.

A study on the activation characteristics of multi-phase Zr-based hydrogen storage alloy for Ni-MH rechargeable battery (Ni-MH 2차전지용 다상의 Zr계 수소저장합금 전극의 활성화 특성에 관한 연구)

  • Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.4
    • /
    • pp.161-171
    • /
    • 1997
  • $AB_2$ type Zr-based Laves phase alloys have been studied for potential application as negative electrode in Ni/MH batteries. However, They have a serious disadvantage of poor activation behavior in KOH solution. In this work, a new method of alloy design method was tried for improving Zr-based alloy activation. this method has focused on phase controlling to make multi-phase microstructure. In the case of multi-phase Zr-V-Mn-Ni shows good performance in activation, but activation mechanism has not been known. So, we were in search of elucidating this mechanism, Using morphological and electrochemical analysis, we could find that surface morphology and electocatalytic activity of the alloy change during immersion in KOH solution. V-rich second phases are selectively corroded and dissolved and then become Ni-rich phases. Resulting from these surface reaction in KOH solution, self-hydrogen charging occurs through Ni-rich phase. However, the alloy has poor cyclic durability because of such a corrosion mechanism. Therefore, finally we developed durable alloys by substitution of other alloying element.

  • PDF

Fuel Cell Performance by the Impedance Method (임피던스법을 적용한 연료전지 성능규명)

  • Kim, Gwi-Yeol;Seo, Jang-Soo;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.157-159
    • /
    • 2001
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of Fe/20Cr/Ti alloys has been done in (62+38)mol% (Li+K)C03 melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method. And, The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for SOFC, by the way, Ni-YSZ materials are used as anode of SOFC widely. So in this experiments, we investigated the optimum content of Ni, by the impedance characteristics, overvoltage. As a result, the performance of Ni-YSZ anode(40vol%) was better excellent than the others.

  • PDF

Effects of phosphating bath compositions on the formation and structure of zinc phosphate conversion coatings on magnesium alloy AZ31

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.322-323
    • /
    • 2012
  • This study discussed the formation of phosphate conversion coatings on AZ31 Mg alloy (AZ31) from the zinc phosphating bath with various concentrations of sodium fluoride (NaF). The effects of NaF on the formation, structure, composition and electrochemical behavior of the phosphate coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) weight balances, open circuit potential (OCP) transients, potentiodynamic polarization curves and immersion test. The coatings were composed of two layers: an outer $Zn_2(PO_4)_3.4H_2O$ (hopeite) crystal layer and an inner amorphous of $MgZn_2(PO_4)_2$. NaF concentration is emphasized to be highly effective in the formation of the hopeite crystal and etching and coating rates. Potentiodynamic polarization and immersion test showed that the coatings formed in the zinc phosphating bath with addition of NaF have much higher corrosion resistance than bare AZ31.

  • PDF

Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy

  • Lee, Bo-Ah;Kim, Hae-Jin;Xuan, Yun-Ze;Park, Yeong-Joon;Chung, Hyun-Ju;Kim, Young-Joon
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.512-520
    • /
    • 2014
  • PURPOSE. The purpose of this study was to assess the surface characteristics and the biocompatibility of zirconium (Zr) coating on Ti-6Al-4V alloy surface by radio frequency (RF) magnetron sputtering method. MATERIALS AND METHODS. The zirconium films were developed on Ti-6Al-4V discs using RF magnetron sputtering method. Surface profile, surface composition, surface roughness and surface energy were evaluated. Electrochemical test was performed to evaluate the corrosion behavior. Cell proliferation, alkaline phosphatase (ALP) activity and gene expression of mineralized matrix markers were measured. RESULTS. SEM and EDS analysis showed that zirconium deposition was performed successfully on Ti-6Al-4V alloy substrate. Ti-6Al-4V group and Zr-coating group showed no significant difference in surface roughness (P>.05). Surface energy was significantly higher in Zr-coating group than in Ti-6Al-4V group (P<.05). No difference in cell morphology was observed between Ti-6Al-4V group and Zr-coating group. Cell proliferation was higher in Zr-coating group than Ti-6Al-4V group at 1, 3 and 5 days (P<.05). Zr-coating group showed higher ALP activity level than Ti-6Al-4V group (P<.05). The mRNA expressions of bone sialoprotein (BSP) and osteocalcin (OCN) on Zr-coating group increased approximately 1.2-fold and 2.1-fold respectively, compared to that of Ti-6Al-4V group. CONCLUSION. These results suggest that zirconium coating on Ti-6Al-4V alloy could enhance the early osteoblast responses. This property could make non-toxic metal coatings on Ti-6Al-4V alloy suitable for orthopedic and dental implants.

Characteristics of surface damage with applied current density and cavitation time variables for 431 stainless steel in seawater (431 스테인리스강의 해수 내 적용 전류밀도 및 캐비테이션 시간 변수에 따른 표면손상 특성)

  • Kim, Seong-Jong;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.883-889
    • /
    • 2014
  • It is generated for cavitation erosion due to the local static boiling by pressure differentials in high speed rotating fluid environment. The cavitation is influenced by various elements such as pressure, velocity, temperature, pH of fluid and medium. In particular, the damage of material is accelerated due to the electrochemical corrosion by $C1^-$ and cavitation erosion due to cavities in seawater. In this paper, hence, it investigated for martensite stainless steel the damage behavior with applied current density and cavitation time in natural seawater solution. Less damage depth at the cavitation condition was observed than static condition as a result of galvanostatic experiment. Furthermore, it was shown that dramatic increase of weightloss, damage rate and damage depth after 3 hour of cavitation test.

A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys

  • Lee, Sang-Min;Kim, Seoung-Hoe;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.197-210
    • /
    • 1999
  • The hydrogen storage performance and electrochemical properties of $Zr_{1-X}Ti_X(Mn_{0.2}V_{0.2}Ni_{0.6})_{1.8}$(X=0.0, 0.2, 0.4, 0.6) alloys are investigated. The relationship between discharge performance and alloy characteristics such as P-C-T characteristics and crystallographic parameters is also discussed. All of these alloys are found to have mainly a C14-type Laves phase structure by X-ray diffraction analysis. As the mole fraction of Ti in the alloy increases, the reversible hydrogen storage capacity decreases while the equilibrium hydrogen pressure of alloy increases. Furthermore, the discharge capacity shows a maxima behavior and the rate-capability is increased, but the cycling durability is rapidly degraded with increasing Ti content in the alloy. In order to analyze the above phenomena, the phase distribution, surface composition, and dissolution amount of alloy constituting elements are examined by S.E.M., A.E.S. and I.C.P. respectively. The decrease of secondary phase amount with increasing Ti content in the alloy explains that the micro-galvanic corrosion by multiphase formation is little related with the degradation of the alloys. The analysis of surface composition shows that the rapid degradation of Ti-substituted Zr base alloy electrode is due to the growth of oxygen penetration layer. After comparing the radii of atoms and ions in the electrolyte, it is clear that the electrode surface becomes more porous, and that is the source of growth of oxygen penetration layer while accelerating the dissolution of alloy constituting elements with increasing Ti content. Consequently, the rapid degradation (fast growth of the oxygen-penetrated layer) with increasing Ti substitution in Zr-based alloy is ascribed to the formation of porous surface oxide through which the oxygen atom and hydroxyl ion with relatively large radius can easily transport into the electrode surface.

  • PDF

Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method (정전위법에 의한 해상풍력 타워 구조물용 강재의 음극방식을 위한 최적방식전위 결정)

  • Lee, Jung-Hyung;Jung, Kwang-hu;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • In this study, electrochemical methods were used to determine the optimum protection potential of S355ML steel for the cathodic protection of offshore wind-turbine-tower substructures. The results of potentiodynamic polarization experiments indicated that the anodic polarization curve did not represent a passivation behavior, while under the cathodic polarization concentration, polarization was observed due to the reduction of dissolved oxygen, followed by activation polarization by hydrogen evolution as the potential shifted towards the active direction. The concentration polarization region was found to be located between approximately -0.72 V and -1.0 V, and this potential range is considered to be the potential range for cathodic protection using the impressed current cathodic protection method. The results of the potentiostatic experiments at various potentials revealed that varying current density tended to become stable with time. Surface characterization after the potentiostatic experiment for 1200 s, by using a scanning electron microscope and a 3D analysis microscope confirmed that corrosion damage occurred as a result of anodic dissolution under an anodic polarization potential range of 0 to -0.50 V, which corresponds to anodic polarization. Under potentials corresponding to cathodic polarization, however, a relatively intact surface was observed with the formation of calcareous deposits. As a result, the potential range between -0.8 V and -1.0 V, which corresponds to the concentration polarization region, was determined to be the optimum potential region for impressed current cathodic protection of S355ML steel.