• 제목/요약/키워드: Electro-static

검색결과 191건 처리시간 0.035초

셀룰로오스 Electro-Active Paper(EAPap)를 이용한 변형률 센서 (Strain Sensor Application Using Cellulose Electro-Active Paper(EAPap))

  • 장상동;김주형;김재환
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.915-921
    • /
    • 2009
  • Cellulose based electro-active paper(EAPap) is considered as a new smart material which has a potential to be used for biomimetic actuators and sensors. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. When the external stress is applied to EAPap, it can generate the electrical output due to its piezoelectric property. Using piezoelectric behavior of EAPap, we studied the feasibility of EAPap as mechanical strain sensor applications and compared to commercial strain sensor. By measuring the induced output voltage from the thin piezoelectric cellulose EAPap under static and dynamic force, we propose cellulose EAPap film as a potential strain sensor material.

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

A topological optimization method for flexible multi-body dynamic system using epsilon algorithm

  • Yang, Zhi-Jun;Chen, Xin;Kelly, Robert
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.475-487
    • /
    • 2011
  • In a flexible multi-body dynamic system the typical topological optimization method for structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological optimization of the flexible multi-body dynamic system is converted into structural optimization using the equivalent static load method. First, the actual boundary conditions of the control system and the approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical simulation. Second, the finite element models are built using the absolute nodal coordination for different positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key points in the stiffness curve are fully solved as the initial solution, and the following equilibrium equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The presented method is applied to the optimal design of a die bonder. The numerical results show that the presented method is practical and efficient when optimizing the design of the mechanism.

Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.77-87
    • /
    • 2020
  • By employing a quasi-3D plate formulation, the present research studies static stability of magneto-electro-thermo-elastic functional grading (METE-FG) nano-sized plates. Accordingly, influences of shear deformations as well as thickness stretching have been incorporated. The gradation of piezo-magnetic and elastic properties of the nano-sized plate have been described based on power-law functions. The size-dependent formulation for the nano-sized plate is provided in the context of nonlocal elasticity theory. The governing equations are established with the usage of Hamilton's rule and then analytically solved for diverse magnetic-electric intensities. Obtained findings demonstrate that buckling behavior of considered nanoplate relies on the variation of material exponent, electro-magnetic field, nonlocal coefficient and boundary conditions.

ESD 시뮬레이션과 TLP 측정해석을 위한 TCAD calibration methodology 개발 (Development of TCAD calibration methodology for ESD simulation and TLP measurement analysis)

  • 염기수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.538-542
    • /
    • 1999
  • ESD(Electro-Static Discharge) 보호회로용 nMOSFET에 대하여 TCAD 시뮬레이션을 수행하기 위한 새로운 parameter calibration 방법론을 제안하였다. ESD 특성 측정방법의 하나인 TLP (Transmission Line Pulsing)측정을 이용하는 경우, ESD 입력에 대하여 시간변화에 따른 소자의 특성을 파악할 수 있기 때문에 최근 많은 관심을 받고 있다. 본 논문에서는 TLP 측정의 해석방법과 TCAD simulation, 그리고 parameter calibration의 방법론을 제시하였다.

  • PDF

아크가 발생하지 않는 새로운 전자식 DC 플러그 (ARC free new DC plugger using static transfer switch)

  • 김태진;백주원;김종현;류명효
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.568-569
    • /
    • 2012
  • 최근 태양광, 연료전지등과 같은 DC 에너지원의 증가와 컴퓨터 및 각종 DC 부하의 증가로 인하여, 보다 효과적인 DC 에너지 공급 시스템을 연구하고 있다. 본 연구에서는 DC 플러그를 전원에서 분리할 때 반도체 소자를 사용하여 전원과 부하가 끊어지므로 아크는 전혀 발생되지 않는 전자식 플러그를 제안하였다. 400V, 10A/port의 차단능력을 가지는 시작품을 제작하고, 이 플러그의 차단능력이 기존방식에 비하여 약 50us이상(약1/10배) 빨리 소호됨을 확인하였다.

  • PDF

전자석 액츄에이터를 이용한 구 주위의 유동제어 (Active control of flow over a sphere using electro-magnetic actuators)

  • 박진일;최해천;전우평
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.497-501
    • /
    • 2000
  • Flow over a sphere is controlled experimentally at $Re=10^5$ using electro-magnetic actuators. The electro-magnetic actuator developed in this study is composed of the permanent magnet electro-magnet membrane and slot. Eight actuators are placed inside the sphere at equally spaced intervals on a latitudinal plane and the position of the control slot is 76 from the stagnation point. Each actuator generates a periodic blowing and suction through the slot at variable frequencies of $10{\sim}140Hz$ and variable amplitudes by controlling electric signals applied to the electro-magnet. Drag on the sphere measured using a load cell is significantly reduced with control at the forcing frequencies larger than the natural shedding frequency $({\approx}14Hz\;at\;Re=10^5)$, whereas drag is slightly increased at the forcing frequency of 10Hz. It is shown from pressure measurement that the static pressure in the rear surface of the sphere is significantly increased with control, indicating that the separation is delayed due to control. Flow visualizations also show that the detaching shear layer is more attracted to the sphere center with control, the separation bubble size is significantly reduced, and motion inside the bubble is very weak, as compared to the case of uncontrolled flow.

  • PDF

Effects of Static Magnetic Fields on Phagocytic Activity of Murine Peritoneal Macrophages

  • Eun, Jae-Soon;Ko, Dae-Woong;Jeon, Yong-Keun;Lee, Kyung-A;Park, Hoon;Ma, Tian-Ze;Kim, Min-Gul;Kwak, Yong-Geun
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.152-159
    • /
    • 2006
  • Electro-magnetic fields and static magnetic fields generated from diverse home/environmental sources have been reported that these could make harmful effects on the human health such as suppression of immunity and tumorigenesis. However, the mechanisms for the biologic effects of electro-magnetic fields or static magnetic fields are still remained unclear. In this study, we examined the in vitro effects of static magnetic fields (SMF) on murine peritoneal macrophages. The cells were exposed in vitro to SMF of $150{\sim}250$ or $350{\sim}450$ G in 5% $CO_2$-incubator. The phagocytic activity of murine peritoneal macrophages was inhibited under exposure to SMF. In order to provide a more complete picture of molecular mechanism for the biological effect of SMF, we compared the levels of total proteins from macrophages with or without exposure to SMF using quantitative proteomic analysis. Proteins which were differentially expressed in macrophages exposed to SMF compared with non-exposed macrophages, were identified. Among them, the levels of trypsinogen 16, lactose-binding lectin Mac-2, galactoside-binding lectin, actin-like (Put. ${\beta}-actin$, vimentin) and electron transferring flavoprotein beta polypeptide were enhanced under exposure to SMF. These results suggest that SMF can affect the phagocytic activity of macrophages via diverse mechanisms.

EMTP를 이용한 전압보상용 SVC모델링 (Modeling of Static VAR Compensator for Voltage Control Using EMTP)

  • 박대윤;이유진;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.2283-2284
    • /
    • 2008
  • TCR(Thyristor Controlled Reactor, 싸이리스터 제어 리액터)를 사용한 SVC(Static VAR Compensator, 정지형 무효전력 보상장치)의 모델링을 제시한다. 이 모델링을 전력계통의 전압 제어에 적용하며 EMTP(Electro-Magnetic Transient Program, 전자기적 과도현상 해석 프로그램)를 통하여 시뮬레이션의 결과를 도출하고 EMTP를 통한 모델링을 확인한다.

  • PDF