• Title/Summary/Keyword: Electro-slag casting

Search Result 6, Processing Time 0.019 seconds

Machining Characteristics of Tool Steels Manufactured by Electro Slag Casting Process (ESC 공정으로 제작된 금형강의 가공특성연구)

  • Kim, Jung-Woon;Kim, Bong-Joon;Lee, Deug-Woo;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1120-1126
    • /
    • 2002
  • Machining characteristics of tool steels manufactured by electro slag casting process has been investigated in this study. For the estimation of machinability, turning and drilling tests are carried out. The chip shapes at various velocities are investigated for the comparison of turning workabilities of tool steels because the chip shapes reflect characteristics of cutting resistance. In case of drilling test, feed motor currents measured by a hall sensor are used as a measure for the drilling resistance. The machining characteristics of the tool steels are strongly correlated with tensile properties, such as tensile strength, hardness, and ductility. In case of turning workability, it was found to be favoured by the higher tensile strength, while the opposite is true far the drilling workability. The electro-slag casted materials show better turning workability in the viewpoint of chip shapes and, the quenching-tempered electro-slag casted material has relatively better drilling machinability than that of the annealed one.

Thermal and Mechanical Properties of Electro-Slag Cast Steel for Hot Working Tools

  • Moon Young Hoon;Kang Boo Hyun;Van Tyne Chester J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.496-504
    • /
    • 2005
  • The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel. AISI-6F2 is a hot-working tool steel. Electro-slag casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode. The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape. In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and forged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel.

Effect of Alloying Elements on the Microstructure and High Temperature Oxidation Behavior of the Electro-Slag Remelted Fe-22Cr-5Al Alloy (일렉트로 슬래그로 재용해한 Fe-22Cr-5Al 합금의 미세조직 및 고온 산화 거동에 미치는 첨가 원소의 영향)

  • Kim, Moon-Hyun;Lee, Jeong-Keun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.293-298
    • /
    • 2002
  • The effects of alloying elements added on the microstructure and high temperature oxidation behavior of the electro-slag remelted Fe-22Cr-5Al alloy were investigated. The amount of casting defect was makedly reduced by the electro-slag remelting. The electro-slag remelted ingot had a directionally solidified structure and cleaner surface than that of air-melted one. The high temperature oxidation reststance was greatly improved by the addition of Be and Zr.

Application of the Riser Heating Equipment to Control Shrinkage defects for Casting of the Propeller (선박용 프로펠러 주조시 수축결함 제어용 압탕가열장치 적용)

  • Mun, Hyeon-Jun;Kim, Chung-Sup;Park, Tae-Dong;Lee, Dong-Jo;Yun, Seog-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2008
  • An integrated riser heating equipment has been developed to control shrinkage defects originated from casting of a marine propeller. The integrated riser heating equipment is composed of up/down moving parts, heating power source parts and an integrated controller. Heat capacity putting into the riser was calculated quantitatively on the base of a heat transfer analysis, which consisted of the establishment of heating model and the theoretical analysis for heat transfer. The riser heating equipment was evaluated through arc heating and electro-slag heating method. With the results, the arc type heating method was selected by considering high thermal efficiency, inexpensive cost, and convenient workship. This equipment improves the quality of a propeller casting and the poor working environment.

Analysis of Thermal Shock and Thermal Fatigue in Tool Steels for Hot Forging (열간단조 금형강의 열충격과 열피로 특성연구)

  • 김정운;문영훈;류재화;박형호
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2002
  • The thermal shock and thermal fatigue test has been carried out to analyze the thermal characteristics of tool steels for hot forging and the effects of mechanical properties on this study have been investigated. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. Based on these results, some critical temperature($T_{fracture}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. During thermal fatigue tests, the thermal fatigue cracks occur because of the repetitive heating and cooling of the die surface and the thermal fatigue damage was evaluated by analyzing different number of cycles to failure. The results showed that the resistance to thermal shock and thermal fatigue were found to be favoured by high hot tensile strength and high hot hardness, and thermal resistance of SKD61 was superior to that of ESC, SKT4 and this was caused by higher mechanical properties of SKD61.