• 제목/요약/키워드: Electro-mechanical Actuator

검색결과 189건 처리시간 0.033초

Sol-gel Mechanism of Self-patternable PZT Film Starting from Alkoxides Precursors

  • Hwang, Jae-Seob;Kim, Woo-Sik;Park, Hyung-Ho;Kim, Tae-Song
    • 한국세라믹학회지
    • /
    • 제40권4호
    • /
    • pp.385-392
    • /
    • 2003
  • Sol-gel preparation technique using a chemical reaction of metal alkoxides has been widely used for the fabrication of various materials including ceramics. However, its mechanism has been studied till now because a number of chemical ways are possible from various alkoxides and additives. In this study, the mechanism of hydrolysis, condensation, and polymerization of alkoxides were investigated from the fabrication of lead-zirconate-titanate (PbZr$\_$x/Ti$\_$l-x/O$_3$; PZT) thin film that is used as various micro-actuator, transducer, and sensor because of its high electro-mechanical coupling factors and thermal stability. Furthermore, the fabrication process and characteristics of self-patternable PZT film using photosensitive stabilizer were studied in order to resolve the problem of physical damage and properties degradation during dry etching for device fabrication. Using an optimum condition to prepare the self-patternable PZT film, more than 5000 ${\AA}$ thick self-patternable PZT film could be fabricated by three times coating. The PZT film showed 28.4 ${\mu}$c/cm$^2$ of remnant polarization (Pr) and 37.0 kV/cm of coercive field (E$\_$c/).

BLDC 모터로 구동되는 액체 추진제 로켓엔진용 극저온 추력제어밸브 개발 (Development of BLDC Motor Driven Cryogenic Thrust Control Valve for Liquid Propellant Rocket Engine)

  • 정태규;이수용
    • 한국항공우주학회지
    • /
    • 제38권10호
    • /
    • pp.1026-1030
    • /
    • 2010
  • 본 논문에서는 KSLV-II의 로켓엔진에 사용될 BLDC 모터로 구동되는 극저온 추력제어 밸브의 개발 과정 및 결과를 소개하였다. 개발된 추력제어밸브는 90K의 극저온, 113.2bar의 고압 환경에서 액체산소의 유량을 BLDC 모터로 작동되는 밸브 구동기를 통해 조절할 수 있다. 추력제어밸브는 모든 개발 인증시험을 통과하였으므로 향후 일부 하드웨어 수정 후, 엔진 연소시험에 적용이 가능하다.

PZT와 ER유체를 적용한 복합지능구조물의 진동제어 (Vibration Control of Hvbrid Smart Structure Using PZT Patches and ER Fluids)

  • 윤신일;박근효;한상보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.734-739
    • /
    • 2003
  • Many types of smart materials and control laws are available to actively adjust the structure from various external disturbances. Usually, a certain type of control laws to activate a specific smart material is well established, but the effectiveness of the control scheme is limited by the choice of the smart materials and the responses of the structure. ER fluid is adequate to provide relatively large control force, on the other hand, the PZT patches are suitable to provide small but arbitrary control forces at any point along the structure. It was found that active vibration control mechanism using ER fluid failed to suppress the excitation off the resonant frequency with changed structural characteristics along the frequency response function of the closed loop of the control system. To compensate this additional peak of the closed loop system, PPF control using PZT as an actuator is added to construct a hybrid controller.

  • PDF

Packaging MEMS, The Great Challenge of the $21^{st}$ Century

  • Bauer, Charles-E.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.29-33
    • /
    • 2000
  • MEMS, Micro Electro-Mechanical Systems, present one of the greatest advanced packaging challenges of the next decade. Historically hybrid technology, generally thick film, provided sensors and actuators while integrated circuit technologies provided the microelectronics for interpretation and control of the sensor input and actuator output. Brought together in MEMS these technical fields create new opportunities for miniaturization and performance. Integrated circuit processing technologies combined with hybrid design systems yield innovative sensors and actuators for a variety of applications from single crystal silicon wafers. MEMS packages, far more simple in principle than today's electronic packages, provide only physical protection to the devices they house. However, they cannot interfere with the function of the devices and often must actually facilitate the performance of the device. For example, a pressure transducer may need to be open to atmospheric pressure on one side of the detector yet protected from contamination and blockage. Similarly, an optical device requires protection from contamination without optical attenuation or distortion being introduced. Despite impediments such as package standardization and complexity, MEMS markets expect to double by 2003 to more than $9 billion, largely driven by micro-fluidic applications in the medical arena. Like the semiconductor industry before it. MEMS present many diverse demands on the advanced packaging engineering community. With focused effort, particularly on standards and packaging process efficiency. MEMS may offer the greatest opportunity for technical advancement as well as profitability in advanced packaging in the first decade of the 21st century! This paper explores MEMS packaging opportunities and reviews specific technical challenges to be met.

  • PDF

The Fabrication of Micro-Heaters with Low-Power Consumption Using SOI and Trench Structures

  • 정귀상;홍석우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.197-201
    • /
    • 2002
  • This paper presents optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SOI and trench structures. The micro-heaters are based on a thermal measurement principle and contains thermal isolation regions of 10 ${\mu}m$-thick Si membranes consisting of oxide-filled trenches in the SOI membrane rim. The micro-heaters were fabricated with Pt-RTD on the same substrate via MgO buff layer between Pt thin-film and $SiO_2$ layer. The thermal characteristics of micro-heater with trench-free SOI membrane structure was $280^{\circ}C$ at input power 0.9 W; in the presence of 10 trenches, it was $580^{\circ}C$ due to reduction of the external thermal loss. Therefore, a micro-heater with trenches in SOI membrane rim structure provides a powerful and versatile alternative technology for enhancing the performance of micro-thermal sensors and actuators.

  • PDF

NKN 무연압전 액추에이터의 신뢰성 연구 (An Investigation on the Aging Properties of NKN Lead-free Piezoelectric Multi-layer Ceramic Actuators)

  • 채문순;이규탁;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.803-806
    • /
    • 2011
  • 1 mol% $Li_2O$ excess $0.9(Na_{0.52}K_{0.48})NbO_3-0.1LiTaO_3$ lead-free piezoelectric multilayer ceramic actuators were investigated to determine their aging properties. To reduce the thermal aging behavior, we applied a rectified unipolar electric field of 5 kV/mm to the specimen to accelerate the electric aging behavior. By employing a rectified unipolar electric field for the piezoelectric actuators, we could remove undesirable heating from the relaxation current in the motion of the ferroelectric domain. To accelerate the aging test, the applied electric fields had a frequency of 900 Hz. To have enough time for charging and discharging, we employed an accurate time constant to design the equivalent circuit model for the aging tester. To extract exact aging behavior, we measured the pseudo-piezoelectric coefficient before and after the aging process. We also measured the electro-mechanical coupling coefficient, the frequency-dependent dielectric permittivity, and the impedance to compare with fresh and aged specimen.

평형곤을 모사한 생체모방형 구동부 일체형 각속도 센서 (Biomimetic Gyroscope Integrated with Actuation Parts of a Robot Inspired by Insect Halteres)

  • 정민기;김지수;장서형;이태재;심형보;고형호;조규진;조동일
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.705-709
    • /
    • 2016
  • Micro-electro-mechanical systems (MEMS) gyroscopes are widely used in various robot applications. However, these conventional gyroscopes need to vibrate the proof mass using a built-in actuator at a fixed resonance frequency to sense the Coriolis force. When a robot is not moving, the meaningless vibration of the gyroscope wastes power. In addition, this continuous vibration makes the sensor vulnerable to external sound waves with a frequency close to the proof-mass resonance frequency. In this paper, a feasibility study of a new type of gyroscope inspired by insect halteres is presented. In dipterous insects, halteres are a biological gyroscope that measures the Coriolis force. Wing muscles and halteres are mechanically linked, and the halteres oscillate simultaneously with wing beats. The vibrating haltere experiences the Coriolis force if the insect is going through a rotational motion. Inspired by this haltere structure, a gyroscope using a thin mast integrated with a robot actuation mechanism is proposed. The mast vibrates only when the robot is moving without requiring a separate actuator. The Coriolis force of the mast can be measured with an accelerometer installed at the tip of the mast. However, the signal from the accelerometer has multiple frequency components and also can be highly corrupted with noise, such that raw data are not meaningful. This paper also presents a suitable signal processing technique using the amplitude modulation method. The feasibility of the proposed haltere-inspired gyroscope is also experimentally evaluated.

A new damage identification approach based on impedance-type measurements and 2D error statistics

  • Providakis, Costas;Tsistrakis, Stavros;Voutetaki, Maristella;Tsompanakis, Yiannis;Stavroulaki, Maria;Agadakos, John;Kampianakis, Eleftherios;Pentes, George
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.319-338
    • /
    • 2015
  • The electro-mechanical impedance (EMI) technique makes use of surface-bonded lead zirconate titanate (PZT) patches as impedance transducers measuring impedance variations monitored on host structural components. The present experimental work further evaluate an alternative to the conventional EMI technique which performs measurements of the variations in the output voltage of PZT transducers rather than computing electromechanical impedance (or admittance) itself. This paper further evaluates a variant of the EMI approach presented in a previous work of the present authors, suitable, for low-cost concrete structures monitoring applications making use of a credit card-sized Raspberry Pi single board computer as core hardware unit. This monitoring approach is also deployed by introducing a new damage identification index based on the ratio between the area of the 2-D error ellipse of specific probability of EMI-based measurements containment over that of the 2-D error circle of equivalent probability. Experimental results of damages occurring in concrete cubic and beam specimens are investigated under increasing loading conditions. Results illustrate that the proposed technique is an efficient approach for identification and early detection of damage in concrete structures.

미세역학적 시험법을 이용한 단-섬유 형태 형상기억합금/에폭시 복합재료의 계면특성 및 응력-경화 감지능 (Interfacial Properties and Stress-Cure Sensing of Single-Shape Memory Alloy (SMA) Fiber/Epoxy Composites using Electro-Micromechanical Techniques)

  • 장정훈;김평기;왕작가;이상일;박종만
    • 접착 및 계면
    • /
    • 제9권3호
    • /
    • pp.20-26
    • /
    • 2008
  • 형상기억합금(SMA)의 구조는 부가된 온도 혹은 응력에 의해 마텐자이트로부터 오스테나이트로의 변화가 가능하다는 것은 잘 알려져 있다. 형상기억합금섬유의 자체 형상회복력으로 인해 응력과 온도가 적용되는 동안에 응력이나 경화 모니터링 센서 또는 작동기로서 사용되었다. 초탄성 현상은 연속적인 기계적 하중 하에서나 온도변화 중에 응력-변형률 곡선에서 확인되었다. 반복하중 실험을 통해 응력-변형률 곡선에서 나타난 초탄성 현상 구간이 나타나는 응력 이력현상이 발생함을 확인하였다. 이것은 형상기억합금섬유 혹은 에폭시에 함침된 형상기억합금섬유 복합재료가 반복하중으로 계면물성 저하로 인한 형상기억 회복 성능의 저하를 의미한다. 강성도가 큰 에폭시 사용과 형상기억합금섬유의 표면처리 이후 형상기억합금섬유와 에폭시 사이의 계면결합력의 증대에도 불구하고 유사한 불완전한 초탄성을 보여 주었다. 단-형상기억합금섬유/에폭시 복합재료 내부에 남은 잔류 열과 이에 따른 잔류 응력으로 인해 에폭시에 함침된 단-형상기억합금섬유에서는 경화과정에서 불완전한 회복을 나타났다.

  • PDF