• 제목/요약/키워드: Electro-hydraulic test rig

검색결과 2건 처리시간 0.149초

능동 현가시스템의 성능평가를 위한 유압식 시험기의 설계 및 제어에 관한 연구 (A study on design and control of hydraulic test rig for performance evaluation of active suspension system)

  • 손영준;이광희;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1445-1449
    • /
    • 1996
  • To evaluate of active suspension, it is necessary for special equipment - so called Test Rig which can perfectly realize the road condition and the impact from the road. And most of the test rig systems controlling force accurately and rapidly consist of electro-hydraulic servo mechanism, and they need robust controller which can endure outer road change. But in the case of PID controller, we should choose its best gains by trial and error method, and once its gains are fixed, they cannot get changed, so we should reset PID controller gains respectively when the road is changed. Therefore based on the load pressure feedback compensation method, our aim at constructing electro-hydraulic test rig is not affected by various road disturbance.

  • PDF

임베디드 시스템을 이용한 CVT 유압시스템 제어 (A Control of CVT Hydraulic System using Embedded System)

  • 한기원;류완식;장인규;전재욱;김현수;황성호
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.18-24
    • /
    • 2007
  • The continuously variable transmission (CVT) of which speed ratio can change continuously in a fixed range has the benefits of low fuel consumption and exhaust gas because it enables the engine of a vehicle to operate in a high efficiency range regardless of vehicle speed. The speed ratio of belt type CVT is controlled by adjusting line pressure. The one of the line pressure control methods, mechanical-hydraulic control is usually adopting VDT's control method, in which the secondary solenoid valve has two functions both a regulator and a line pressure controller. However, this control method could not show the high performance of CVT with optimal driving capability because of the limitation of simple control algorithm, and it could not gain market share sufficiently in spite of the advantage of CVT with low fuel consumption. On the other hand, the electro-hydraulic control method gives the enhancement of power performance and low fuel consumption by implementing various driving mode using the proportional control or PWM control. The key of CVT technique is to develop a control algorithm of the electro-hydraulic solenoid valve in order to implement the speed ratio efficiently. In this paper, the line pressure control algorithm is proposed and the hydraulic system is controlled using metal belt type CVT test rig and the embedded ECU platform.

  • PDF