• Title/Summary/Keyword: Electro-Optical Payload

Search Result 43, Processing Time 0.024 seconds

Vibration effects on remote sensing satellite images

  • Haghshenas, Javad
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.543-553
    • /
    • 2017
  • Vibration is a source of performance degradation in all optical imaging systems. Performance of high resolution remote sensing payloads is often limited due to satellite platform vibrations. Effects of Linear and high frequency sinusoidal vibrations on the system MTF are known exactly in closed form but the low frequency vibration effects is a random process and must be considered statistically. Usually the vibration MTF budget is defined based on the mission requirements and the overall MTF limitations. For analyzing low frequency effects, designer must know all the systems specifications and parameters. With a good understanding of harmful vibration frequencies and amplitudes in the system preliminary design phase, their effects could be removed totally or partially. This procedure is cost effective and let the designer to eliminate just harmful vibrations and avoids over-designing. In this paper we have analyzed the effects of low-frequency platform vibrations on the payload's modulation transfer function. We have used a statistical analysis to find the probability of imaging with a MTF equal or greater than a pre-defined budget for different missions. The worst and average cases have been discussed and finally we have proposed "look-up figures". Using these look-up figures, designer can choose the electro-optical parameters in such a way that vibration effects be less than its pre-defined budget. Furthermore, using the results, we can propose a damping profile based on which vibration frequencies and amplitudes must be eliminated to stabilize the payload system.

Thermal and telemetry module design for satellite camera

  • Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.229-234
    • /
    • 2002
  • Under the hostile influence of the extreme space environmental conditions due to the deep space and direct solar flux, the thermal control in space applications is especially of major importance. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy sources on the spacecraft. So, we usually have strong requirement of thermal and power control module in space applications. In this paper, the design concept of a thermal and power control module in the MSC(Multi-Spectral Camera) system which will be a payload on KOMPSATII is described in terms of H/W & S/W. This thermal and power control module, called THTM(Thermal and Telemetry Module) in MSC, resides inside the PMU(Payload Management Unit) which is responsible for the proper management of the MSC payload for controlling and monitoring the temperature insides the EOS(Electro-Optic System) and gathering all the analog telemetry from all the MSC sub-units, etc. Particularly, the designed heater controller has the special mode of "duty cycle" in addition to normal closed loop control mode as usual. THTM controls heaters in open loop according to on/off set time designed through analysis in duty cycle mode in case of all thermistor failure whereas it controls heaters by comparing the thermistor value to temperature based on closed loop in normal mode. And a designed THTM provides a checking and protection method against the failure in thermal control command using the test pulse in command itself.

  • PDF

위성탑재용 카메라 광학부 예비설계

  • Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.177-187
    • /
    • 2002
  • Some kinds of precision optical systems for spaceborne high resolution cameras were designed at preliminary design level and an optical design for a hyperspectral imager was performed for its development model. A Cassegrain-based catadioptric system and an unobscured reflective triplet system are illustrated in detail for spaceborne high resolution electro optical cameras which have performance of 5m resolution at an altitude of 685km and the design are evaluated in its spot-diagram and MTF to prove they have good performance enough to implement the requirements for realistic satellite payload taking the fabrication conditions and the on-orbit operation into consideration. For the development of hyperspectral imager as a next-generation payload, an optical system has been designed and elaborated. It can be divided into two parts, a catoptric telescope forming an off-axis 2 mirror type and a dispersive spectrometer which comprises collimator, grating and reimaging lens cell. From its optical design to the system characteristics are shown with the MTF performance reaching 25% approximately.

  • PDF

Performance Evaluation of Thermal Control Subsystem of EOS-D Ver.1.0 from In-orbit Telemetry Data (비행 데이터를 이용한 EOS-D Ver.1.0의 열제어계 성능 평가)

  • Chang, Jin-Soo;Kim, Jong-Un;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Seung-Uk;An, Su-Mi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.70-79
    • /
    • 2016
  • Satrec Initiative successfully developed a high-resolution electro-optical camera system, EOS-D Ver.1.0. EOS-D Ver.1.0 is the main payload of DubaiSat-2 and Deimos-2, which are developed based on the SI-300 platform of Satrec Initiative. After the launch and early operation (LEOP) of DubaiSat-2 and Deimos-2, we performed refocusing for the telescope of EOS-D Ver.1.0 to compensate for the dimensional change of its metering structure by moisture out-gassing. Before and after refocusing, we conducted the performance evaluation of thermal control system(TCS) for EOS-D Ver.1.0 using the in-orbit telemetry data. The evaluation showed EOS-D Ver.1.0 was under well-controlled thermal environment, which demonstrates TCS was designed and developed to meet all requirements.

The Performance Analysis of the Satellite EOS(Electro Optical Subsystem) using the Design Parameters of Camera Electronics (카메라 전자부 설계 파라미터를 이용한 위성 전자광학시스템의 성능분석)

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • In this study, we reviewed the variations of GSD, line rate of a electro-optical payload caused by the changes of operational altitude and attitude of a satellite by applying design parameters of the EC6 which is under development. we also reviewed adjustable increments/decrements of line_rate which are limited by CEU(Camera Electronic Unit) design and then the effect on the MIF(Modulation Transfer Function) performance due to the un-synchronization between line_rate of EOS and ground scan velocity of the satellite based on the design parameters of CEU to show that CEU design is appropriate in terms of line_rate control of EOS.

  • PDF

The Quality Loss of a X-Band Transmitter on the LEO Satellite (저궤도 관측위성에 탑재된 X-밴드 송신기의 Quality Loss)

  • 동문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1306-1312
    • /
    • 2000
  • The quality loss of a X-band transmitter has been derived by means of MC simulation. The transmitter as a payload of LEO(Low Earth Orbit) satellite is capable of the down transmission the image data of hundreds Mbps generated from the Electro-Optical Instrument in real time. The parameters such as data asymmetry amplitude unbalance,phase unbalance, wave shaping and channel interference are included in the quality loss simulation Assuming that normally distributed gaussian noise is simply added to the channel, the quality loss of 0.7 dB has been obtained through this simulation based on a 95% confidence interval. The obtained quality loss can be applied to the link budgets as an additional loss item.

  • PDF

Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System (전자광학카메라 시스템의 열제어계 설계 및 개발)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.798-804
    • /
    • 2009
  • A high-resolution electro-optical camera system, EOS-C, is under development in Satrec Initiative. This system is the mission payload of a 400-kg Earth observation satellite. We designed this system to give improved opto-mechanical and thermal performance compared with a similar camera system to be flown on the DubaiSat-1 system. The thermal control subsystem (TCS) of the EOS-C system uses heaters to meet the opto-mechanical requirements during in-orbit operation and it uses different thermal coating materials and multi-layer insulation (MLI) blankets to minimize the heater power consumption. We performed its thermal analysis for the mission orbit using a thermal analysis model and the result shows that its TCS satisfies the design requirements.

Dual Band Optical Window (DBW) for Use on an EO/IR Airborne Camera

  • Park, Kwang-Woo;Park, Sang-Yeong;Kim, Young-Soo;Kim, Ki-Ho;Choi, Young-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • This paper presents a method to derive the theoretical requirements for the development of a 400 mm optical window that transmits dual-band wavelengths and had a stable structure. We also present design and fabrication results. Among the required specifications, the surface figure error was defined by the transmitted wavefront deformation (TWD), ${\lambda}$/15 rms at 632.8 nm. This value was derived by estimating the predicted performances with respect to five independent items that could cause system performance degradation and then calculating the required wavefront error (WFE) to satisfy the performance goals. We measured the image resolution at each performance level to trace and verify the requirements. The article also describes a design optimization process that could minimize the weight and volume of the optical window attached to the payload securing the FOV of the camera. In addition, we accurately measured the deformation that occurred in the series of fabrication steps including processing, coating, assembly, bonding and bolting, and investigated the effects by comparing them to the results of a simulation performed in advance to derive the predicted performance.

NON-UNIFORMITY CORRECTION- SYSTEM ANALYSIS FOR MULTI-SPECTRAL CAMERA

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.478-481
    • /
    • 2005
  • The PMU (Payload Management Unit) is the main subsystem for the management, control and power supply of the MSC (Multi-Spectral Camera) Payload operation. It is the most important function for the electro-optical camera system that performs the Non-Uniformity Correction (NUC) function of the raw imagery data, rearranges the data from the CCD (Charge Coupled Device) detector and output it to the Data Compression and Storage Unit (DCSU). The NUC board in PMU performs it. In this paper, the NUC board system is described in terms of the configuration and the function, the efficiency for non-uniformity correction, and the influence of the data compression upon the peculiar feature of the CCD pixel. The NUC board is an image-processing unit within the PMU that receives video data from the CEV (Camera Electronic Unit) boards via a hotlinkand performs non-uniformity corrections upon the pixels according to commands received from the SBC (Single Board Computer) in the PMU. The lossy compression in DCSU needs the NUC in on-orbit condition.

  • PDF

The Signal-to-Noise Ratio Enhancement of the Satellite Electro-Optical Imager using Noise Analysis Methods (영상센서신호의 잡음분석을 이용한 위성용 전자광학탑재체의 신호대잡음비 개선 방법)

  • Park, Jong-Euk;Lee, Kijun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2017
  • The Satellite Electro-Optic Payload System needsspecial requirements with the conditions of limited power consumption and the space environment of solar radiation. The acquired image quality should be mainly depend on the GSD (Ground Sampled Distance), SNR (Signal to Noise Ratio), and MTF (Modulation Transfer Function). On the well-manufactured sensor level, the thermal noise is removed on ASP (Analog Signal Processing) using the CDS (Corrective Double Sampling); the noise signal from the image sensor can be reduced from the offset signals based on the pre-pixels and the dark-pixels. The non-uniformity shall be corrected with gain, offset, and correction parameter of the image sensor pixel characteristic on the sensor control system. This paper describes the SNR enhancement method of the satellite EOS payload using the mentioned noise remove processes on the system design and operation, which is verified by tests and simulations.