• Title/Summary/Keyword: Electro-Optical/Infrared Devices

Search Result 4, Processing Time 0.02 seconds

Establishment of Test & Evaluation Criteria in the Military Electro-Optical / Infrared Devices (군용 EO/IR장비의 시험평가 기준 정립방안)

  • Park, Jong Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.613-617
    • /
    • 2016
  • Development-concerned parties, business managers and test evaluators have experienced conflicts among themselves due to the absence of standardized criteria for military electro-optical(EO) and infrared(IR) devices in test evaluation planning and evaluation phases. Therefore, establishment of objectified test and evaluation criteria for EO/IR devices is required. This paper applies South Korea's weather measurement average of minimum 15 km for visibility range, 3 bar from Johnson criteria for EO device and 4 bar from NATO's STANAG-4347 for IR device for target type, and 50 % probability for evaluation criteria, respectively. Based upon these criteria, this paper will establish suitable criteria that are improved for development weapon system in consideration of required capability of demanding forces and field environment.

Comparison of Junction Temperature for Top-Emitting Organic Light-Emitting Diodes Fabricated on Different Substrates

  • Juang, Fuh-Shyang;Tsai, Yu-Sheng;Wang, Shun-Hsi;Chen, Chuan-Hung;Cheng, Chien-Lung;Liao, Teh-Chao;Chen, Guan-Wen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1148-1151
    • /
    • 2009
  • A self-designed, written in labview, Organic Light-Emitting Diode junction temperature measuring program was used to calculate the internal junction temperature for devices during operation, and an infrared thermometer was used to measure the backside temperature of the device substrate, to discuss the effects of the junction and substrate temperature difference to the characteristics of the device.

  • PDF

Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구)

  • Ko, Jun Bin;Myung, Tae Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

Chalcogenide Ge-Sb-Se Optical and Crystallization Characteristics for Basic a Planning Aspheric Lens (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se 광학계 및 결정화 특성 연구)

  • Myung, Tae Sik;Ko, Jun Bin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.598-603
    • /
    • 2016
  • The recent development of electro-optic devices and anticorrosion media has led to the necessity to investigate infrared optical systems with solid-solid interfaces of materials that often have the characteristic of amorphousness. One of the most promising classes of materials for those purposes seems to be the chalcogenide glasses. Chalcogenide glasses, based on the Ge-Sb-Se system, have drawn a great deal of attention because of their use in preparing optical lenses and transparent fibers in the range of 3~12 um. In this study, amorphous Ge-Sb-Se chalcogenide for application in an infrared optical product design and manufacture was prepared by a standard melt-quenching technique. The results of the structural, optical and surface roughness analysis of high purity Ge-Sb-Se chalcogenide glasses are reported after various annealing processes.