• 제목/요약/키워드: Electro-Magnetic Wave Environment

검색결과 17건 처리시간 0.023초

진단용 영상장치에서 전자파 측정에 관한 고찰 (A Study on the Electromagnetic Wave Measurement in Diagnostic Imaging Equipment)

  • 어윤기
    • 대한디지털의료영상학회논문지
    • /
    • 제7권1호
    • /
    • pp.39-44
    • /
    • 2005
  • Purpose of this research is that if Radiographer has focused on Radiation exposure research until now, he should realize that always exposed by Electro Magnetic Wave at given working environment And also, another purpose is that to minimize damage with measuring Electro Magnetic Wave which is happened area and distance of Radiation Control System and High Voltage Equipment, check occurrence rate and minimize damage from it.

  • PDF

A Study on the EM Wave Absorber for Improving Electromagnetic Environment of Wireless LAN at 2.4 GHz

  • Yoo, Gun-Suk;Kim, Dong-Il;Choi, Dong-Soo;Choi, Dong-Han
    • 한국항해항만학회지
    • /
    • 제34권7호
    • /
    • pp.539-542
    • /
    • 2010
  • In this paper, we designed and fabricated the Electro-Magnetic (EM) wave absorber for wireless LAN by using Amorphous and CPE. The material constants and the absorption properties were measured for the samples containing 50 %, 60 %, and 70 % weight fraction of Amorphous. Moreover, the EM wave absorption abilities were simulated for the EM absorbers in different thicknesses by adopting the measured permittivity and permeability, and then the EM wave absorber was fabricated based on the simulated design values. As a result, the EM wave absorber with the composition ratio in Amorphous : CPE = 60 : 40 wt.% with the thickness of 4 mm has the absorption ability more than 35 dB at 2.4 GHz. Thus, it is expected the wireless LAN environment can be improved by using the developed absorber.

전기기기의 전자파가 인체에 미치는 영향 (Effects on human of Electro-magnetic instrument electromagnetic wave)

  • 김태호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.21-22
    • /
    • 2008
  • Recently, we are living in environment which various electrical appliance help our life. But the meanwhile, we had not researched how far the electromagnetic waves of electrical appliance affected the human's life. In accordance with, this paper will find out how far the human are weighed with electromagnetic waves of electrical appliance. And we will demonstrate the method that humans are failed under minimum effect from the harmful electromagnetic waves.

  • PDF

MRI용 심전도/혈류 게이팅 시스템 설계 (Design of ECG/PPG Gating System in MRI Environment)

  • 장봉렬;박호동;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.132-138
    • /
    • 2007
  • MR(magnetic resonance) image of moving organ such as heart shows serious distortion of MR image due to motion itself. To eliminate motion artifacts, MRI(magnetic resonance imaging) scan sequences requires a trigger pulse like ECG(electro-cardiography) R-wave. ECG-gating using cardiac cycle synchronizes the MRI sequence acquisition to the R-wave in order to eliminate image motion artifacts. In this paper, we designed ECG/PPG(photo-plethysmography) gating system which is for eliminating motion artifacts due to moving organ. This system uses nonmagnetic carbon electrodes, lead wire and shield case for minimizing RF(radio-frequency) pulse and gradient effect. Also, we developed a ECG circuit for preventing saturation by magnetic field and a finger plethysmography sensor using optic fiber. And then, gating pulse is generated by adaptive filtering based on NLMS(normalized least mean square) algorithm. To evaluate the developed system, we measured and compared MR imaging of heart and neck with and without ECG/PPG gating system. As a result, we could get a clean image to be used in clinically. In conclusion, the designed ECG/PPG gating system could be useful method when we get MR imaging of moving organ like a heart.

전자기파의 감쇠패턴 및 깊이 정보 취득을 이용한 수중 위치추정 기법 (Underwater Localization using EM Wave Attenuation with Depth Information)

  • 곽경민;박대길;정완균;김진현
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.156-162
    • /
    • 2016
  • For the underwater localization, acoustic sensor systems are widely used due to greater penetration properties of acoustic signals in underwater environments. On the other hand, the good penetration property causes multipath and interference effects in structured environment too. To overcome this demerit, a localization method using the attenuation of electro-magnetic(EM) waves was proposed in several literatures, in which distance estimation and 2D-localization experiments show remarkable results. However, in 3D-localization application, the estimation difficulties increase due to the nonuniform (doughnut like) radiation pattern of an omni-directional antenna related to the depth direction. For solving this problem, we added a depth sensor for improving underwater 3D-localization with the EM wave method. A micro scale pressure sensor is located in the mobile node antenna, and the depth data from the pressure sensor is calibrated by the curve fitting algorithm. We adapted the depth(z) data to 3D EM wave pattern model for the error reduction of the localization. Finally, some experiments were executed for 3D localization with the fast calculation and less errors.

Fundamental Investigation of Functional Property of Concrete Mixed with Functional Materials

  • Lee, Jong-Chan;Lee, Moon-Hwan;Lee, Sae-Hyun;Park, Young-Sin;Park, Jae-Myung
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.165-171
    • /
    • 2006
  • Environment-friendly materials are increasingly used as building construction materials nowadays, and the market share of those is growing. Accordingly, the research and developments in terms of environmental value are progressing steadily now. The main characteristics of environmental products are far-infrared radiation, negative-ion emission, electromagnetic wave shielding, and antimicrobial property. These products are often used in mortar and as spray on the finishing material. Nevertheless, there are hardly any research on the functional properties of concrete, the main material in construction field. Thus, we evaluated such basic properties of concrete as slump, compressive strength and air content while using such functional materials as sericite, wood-pattern sandstone, carbon black and nano-metric silver solution to focus on their functional properties like far-infrared radiation, negative ion emission, electro magnetic wave shielding, and antimicrobial activity in this research. The results indicated that the most useful material in the functional materials was carbon black. Sericite and nano-metric silver solution had a little effect on the functional property. Moreover, although wood-pattern sandstone had very high functional property, it exhibited too low compressive strength to be applied, to concrete as a factory product. Antimicrobial property of nano-metric silver solution in the concrete was not clear demonstrated, but if these specimens were to be aged in $CO_2$ gas for a long time, it might be apparent.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

방열 기능형 고성능 스마트 전파흡수체 제조 방법 개발 및 전망 (A Study on Manufacturing Method of High Performance Smart EMW Absorber with Heat Radiating Function and Its Prospects)

  • 김동일;전용복
    • 한국전자파학회논문지
    • /
    • 제26권10호
    • /
    • pp.841-850
    • /
    • 2015
  • 전자 및 전파 통신기술의 급속한 발전에 따라 인류는 정보통신의 커다란 혜택을 누릴 수 있게 되었다. 그러나 전자파환경은 보다 복잡해지고, 각종 전자기기를 비롯한 인체에 다양한 영향을 미치게 되어 ANSI, FCC, CISPR 등과 같은 국제기구에서는 다양한 전자파환경을 규제하고, 효율적인 제어 및 대책을 수립해 오고 있다. 본 논문에서는 방열 기능을 가지면서 고성능의 전파흡수체 제조 방법을 제안하고, 나아가 미래의 스마트 전파흡수체의 전망을 기술하였다. 산화철($Fe_2O_3$)과 세라믹의 혼합물을 고온 열처리한 후, 탄소 물질과 배합하여 저온 열처리하고, 개구를 형성하여 2~2.45 GHz에서 방열 기능을 가지면서 흡수능이 20 dB 이상인 고성능 전파흡수체를 개발하였다. 이 스마트 전파흡수체는 다양한 전자, 통신, 제어, 전파 시스템의 회로 및 부품 보호용 소재로 활용성이 높을 것으로 보인다.

휴대폰 케이스의 지속가능성 평가 및 나노 입자를 사용한 전자기파 흡수성능 개선 (Evaluation of sustainability of mobile phone case and improvement of electromagnetic shielding by nano particles)

  • 강윤철;정우균;안성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.477-480
    • /
    • 2005
  • In this paper, the concept of sustainability was applied to mechanical design and manufacturing of mobile-phone case. A new evaluation method to find products' good and weak point for sustainability was developed. Two mobile phones were evaluated using the evaluation tool. As a result, electro-magnetic (EM) wave was considered as a harmful factor of the products, and improved front panel was made using nano particles that absorb EM waves. The EM shielding tests revealed that silver nano powders absorbed EM while MWCNT had no effect.

  • PDF

선내 항해통신장비 및 추진장비에 대한 전자파환경 연구 (A study on the Electromagnetic Environment for the Navigation Device and Propulsion Device in Ship)

  • 조형래;최기도;김종우
    • 한국ITS학회 논문지
    • /
    • 제15권1호
    • /
    • pp.87-94
    • /
    • 2016
  • 육상에서의 전자파 환경에 대한 연구는 지속적인 투자와 연구가 이루어지고 있지만 해상의 환경인 선박의 전자파 환경에 관한 시험 및 분석은 연구되어 지지 않는 실정이다. 선박은 최상층 갑판구역, 선교, 기관실로 구성되어있다. 최상층갑판구역은 안테나 및 레이더가 탑재되어 있다. 선교는 안전한 항해를 위한 항해장비가 탑재되어있다. 마지막으로 기관실에서는 선박의 추진시스템에 사용되는 배전반이 탑재되어있다. 따라서 본 연구는 선박이라는 특정 공간에서의 전자파 환경을 분석 후 해상환경에 적용 가능한 최적 기준을 제안하는 것을 목적으로 한다. 이를 위해 국내외 전자파 기준을 활용하여 실선 한국해양대학교 실습선 한바다 호를 측정 후 측정결과를 국내 기준, 이탈리아 기준과 분석하여 선박의 기관실에 대한 국내 기준 적용에 한계가 있음을 확인하였다. 본 연구의 결과는 추후 선박의 전자파 인체 보호 기준 정립을 위한 기초자료로 활용될 수 있을 것으로 기대된다.