• Title/Summary/Keyword: Electro-Hydraulic brake(EHB)

Search Result 4, Processing Time 0.023 seconds

Development of Hardware-in-the-Loop Simulator for EHB Systems (EHB 시스템을 위한 Hardware-in-the-Loop 시뮬레이터 개발)

  • 허승진;박기홍;이해철;김태우;김형수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1139-1143
    • /
    • 2003
  • HILS(Hardware-In-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for EHB(Electro-Hydraulic Brake) systems that include a high pressure generator and a valve control system that independently modulates the brake pressures at four wheels. An EHB control logic was tested in the HILS system. Test results under various driving conditions are presented and compared with the VDC logic.

  • PDF

Real-Time Model-Based Fault Diagnosis System for EHB System (EHB 시스템을 위한 실시간 모델 기반 고장 진단 시스템)

  • Han, Kwang-Jin;Huh, Kun-Soo;Hong, Dae-Gun;Kim, Joo-Gon;Kang, Hyung-Jin;Yoon, Pal-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.173-178
    • /
    • 2008
  • Electro-hydraulic brake system has many advantages. It provides improved braking performance and stability functions. It also removes complex mechanical parts for freedom of design, improves maintenance requirements and reduces unit weight. However, the EHB system should be dependable and have back-up redundancy in case of a failure. In this paper, the model-based fault diagnosis system is developed to monitor the brake status using the analytical redundancy method. The performance of the model-based fault diagnosis system is verified in real-time simulation. It demonstrates the effectiveness of the proposed system in various faulty cases.

Robust Wheel Slip Control for Brake-by-Wire System (Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어)

  • Hong Daegun;Huh Kunsoo;Kang Hyung-Jin;Yoon Paljoo;Hwang Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.

Fuzzy Sliding Mode Control for Cornering Performance Improvement of 4WD HEV (퍼지 슬라이딩 모드를 이용한 4WD 하이브리드 차량의 선회성능 향상)

  • Cheong, Jeong-Yun;Ryu, Sung-Min;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.735-743
    • /
    • 2010
  • A new Fuzzy sliding mode controller is proposed to improve the cornering performance of the four wheel hybrid vehicles. The Fuzzy sliding mode control is applied for the control of rear motor and EHB (Electro-Hydraulic Brake) to improve the cornering performance. The modeling of the automobile is simplified that each of the two wheels is modeled as two degrees of freedom object and the friction coefficient between the wheel and the ground is assumed to be constant. The output of the Fuzzy sliding mode algorithm is the direct yaw moment for the rear wheels, which compensates for the slip angle. Through the simulations using ADAMS and MATLAB Simulink, the cornering performance of the proposed algorithm is compared to the conventional PID to show the superiority of the proposed algorithm. In the simulation experiments, the J-Turn and single lane change are used for each of the Fuzzy sliding mode algorithm and PID controller with the optimal gains which are tuned empirically.