• Title/Summary/Keyword: Electro-Chemical Process

Search Result 175, Processing Time 0.037 seconds

The Cu-CMP's features regarding the additional volume of oxidizer (산화제 배합비에 따른 연마입자 크기와 Cu-CMP의 특성)

  • Kim, Tae-Wan;Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.20-23
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing(CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical polishing(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commercial slurries pads, and post-CMP cleaning alternatives are discuss, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper deposition is a mature process from a historical point of view, but a very young process from a CMP perspective. While copper electro deposition has been used and studied for decades, its application to Cu damascene wafer processing is only now gaining complete acceptance in the semiconductor industry. The polishing mechanism of Cu-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper passivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

The Investigation of Electro-Oxidation of Methanol on Pt-Ru Electrode Surfaces by in-situ Raman Spectroscopy

  • She, Chun-Xing;Xiang, Juann;Ren, Bin;Zhong, Qi-Ling;Wang, Xiao-Cong;Tian, Zhong-Qun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.221-225
    • /
    • 2002
  • Assisted by the highly sensitive confocal microprobe Raman spectrometer and proper surface roughening procedure, the Raman investigation on the adsorption and reaction of methanol was performed on Pt-Ru electrodes with different coverages. A detailed description of the roughening process of the Pt electrodes and the underpotential deposition of the Ru was given. Reasonably good Raman signal reflecting the metal-carbon vibration and CO vibration was detected. The appearance of vibrations of the Ru oxides, together with the existence of Ru-C, Pt-C and CO bands, clearly demonstrates the participation of the bi-functional mechanism during the oxidation process of methanol on Pt-Ru electrodes. The Pt-Ru electrode was found to have a higher catalytic activity over Pt electrodes. This preliminary study shows that electrochemical Raman spectroscopy can be applied to the study of rough electrode surface.

Real-time Monitoring of Cu Plating Process for Semiconductor Interconnect

  • Wang, Li;Jee, Young-Joo;Soh, Dae-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.64-64
    • /
    • 2009
  • As the advanced packaging technology developing, Copper electro-plating processing has be wildly utilized in the semiconductor interconnect technique. Chemical solution monitoring methods, including PH and gravity measurement exist in industry, but economical and practical real-time monitoring has not been achieved yet. Red-green-blue (RGB) color sensor can successfully monitor the condition of $CuSO_4$ solution during electric copper plating process. Comparing the intensity variations of the RGB data and optical spectroscopy data, strong correlation between two in-situ sensors have shown.

  • PDF

Fabrication of Electro-active Polymer Actuator Based on Transparent Graphene Electrode

  • Park, Yunjae;Choi, Hyonkwang;Im, Kihong;Kim, Seonpil;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.386.1-386.1
    • /
    • 2014
  • The ionic polymer-metal composite (IPMC), a type of electro-active polymer material, has received enormous interest in various fields such as robotics, medical sensors, artificial muscles because it has many advantages of flexibility, light weight, high displacement, and low voltage activation, compare to traditional mechanical actuators. Mostly noble metal materials such as gold or platinum were used to form the electrode of an IPMC by using electroless plating process. Furthermore, carbon-based materials, which are carbon nanotube (CNT) and reduced graphene-CNT composite, were used to alter the electrode of IPMC. To form the electrode of IPMC, we employ the synthesized graphene on copper foil by chemical vapor deposition method and use the transfer process by using a support of PET/silicone film. The properties of graphene were evaluated by Raman spectroscopy, UV/Vis spectroscopy, and 4-point probe. The structure and surface of IPMC were analyzed via field emission scanning electron microscope. The fabricated IPMC performance such as displacement and operating frequency was measured in underwater.

  • PDF

A Study of Improvement the Surface Properties of $Hg_{l-x}Cd_xTe$ material by using Electro-Chemical Reduction (전기화학적 환원법에 의한 $Hg_{l-x}Cd_xTe$ 재료의 표면특성 개선에 관한 연구)

  • Lee, Sang-Don;Kim, Bong-Heub;Kang, Hyung-Boo;Choi, Kyung-Ku;Jeoung, Yong-Taek;Park, Hee-Sook;Kim, Hong-Kook
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1280-1282
    • /
    • 1994
  • The method of passivation for protecting the $Hg_{l-x}Cd_xTe$ surface is important device fabrication process, because the surface components are highly reactive leading to its chemical and electrical instability. Especially, the material of which composition is x=0.2 or 0.3, is narrow bandgap semiconductor and used as detector of infrared radiation. The device performance of narrow bandgap semiconductors are largely governed by the properties of the semiconductor surface. The electro-chemical processing of $Hg_{l-x}Cd_xTe$ allows rigorous control of the surface chemistry and provides an in-situ monitor of surface reaction. So electro-chemical reduction at specific potential can selectively eliminate the undesirable species on the surface and manipulated to reproducibly attain the desired stoichiometry. This method shows to assess the quality or chemically treated $Hg_{l-x}Cd_xTe$ good surface.

  • PDF

An Electro-Fenton System Using Magnetite Coated One-body Catalyst as an Electrode (일체형 산화철 촉매를 전극으로 하는 전기펜톤산화법)

  • Choe, Yun Jeong;Ju, Jeh Beck;Kim, Sang Hoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.117-121
    • /
    • 2018
  • A stainless steel mesh was applied to the cathode of an electro-Fenton system. Methylene blue (MB) solution was chosen as the model waste water with non-biodegradable pollutants. For the model waste water, the degradation efficiency was compared among various SUS mesh cathodes with different surface treatments and magnetite coatings on them. With increasing amount of the magnetite coating on SUS mesh, the degradation efficiency also increased. The improved electro-catalytic characteristic was explained by the increased amount of in situ generated hydrogen peroxide near the cathode surface. Cyclic voltammetry data also showed improved electro-catalytic performance for SUS mesh with more magnetite coatings on them.

Effect of operating condition of electro-coagulation on the membrane filtration resistances of activated sludge (전기응집 조건이 활성슬러지 막 여과 저항에 미치는 영향)

  • Hong, Sung-Jun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2314-2320
    • /
    • 2015
  • MBR (Membrane Bio-Reactor) process is known to consume enormous energy to control membrane fouling. To solve this problem, electro-coagulation technique has been applied to MBR. A series of electro-coagulation was applied to activated sludge suspension under different current density condition. After the electro-coagulations, membrane filtration of the activated sludge suspensions was conducted to investigate the effect of electro-coagulation on the fouling. As current density increased 10 to 40A/m2, the total fouling resistance (Rc+Rf) decreased from 18 to 79%, showing that the electro-coagulation improved the membrane filtration efficiency. Both the organic concentration in bulk and the particles size distribution were not nearly changed before and after the electro-coagulation. The enhanced filtration efficiency might be due to the aluminum hydroxide generated from chemical precipitation, which can be acted as a dynamic membrane preventing a deposition of foulants on membrane surfaces.

Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process (열화학 황-요오드 수소 생산 공정의 요오드 결정화기 설계를 위한 결정 침강 모델링)

  • Park, Byung Heung;Jeong, Seong-Uk;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.768-774
    • /
    • 2014
  • SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of $I_2$ from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an $I_2$ removal process. In this work, $I_2$ particle sinking behavior was modeled to secure basic data for designing an $I_2$ crystallizer applied to $I_2$-saturated $HI_x$ solutions. The composition of $HI_x$ solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to $I_2$ particle radius and temperature. The terminal velocity of an $I_2$ particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to $50^{\circ}C$) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

Interfacial Evaluation and Damage Sensing of Carbon Fiber/Epoxy-AT-PEI Composite using Electro-Micromechanical Techniques (Electro-micromechanical 시험법을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 손상 감지능 및 계면물성 평가)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.212-215
    • /
    • 2002
  • Interfacial evaluation and damage sensing of the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composites were performed using micromechanical test and electrical resistance measurement. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and thus their interfacial shear strength (IFSS) was improved due to the improved toughness. After curing process, the changes in electrical resistance (ΔR) with increasing AT-PEI contents increased gradually because of the changes in thermal expansion coefficient (TEC) and thermal shrinkage of matrix. Matrix fracture toughness was correlated to the IFSS, residual stress and electrical resistance. The results obtained from the electrical resistance measurement during curing process, reversible stress/strain, and durability test were consistent with modified matrix toughness properties.

  • PDF