• Title/Summary/Keyword: Electricity industry

Search Result 457, Processing Time 0.029 seconds

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

The Study on the Human Resource Forecasting Model Development for Electric Power Industry (전력산업 인력수급 예측모형 개발 연구)

  • Lee, Yong-Suk;Lee, Geun-Joon;Kwak, Sang-Man
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.67-90
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF

The Impact of Power Plants on the Environment and Region - Focus on Incheon Area according to the 3rd Electric Support Action Plan - (발전소 증설이 환경, 지역사회 및 경제에 미치는 영향 - 제 3차 전력 수급계획에 의한 인천 지역의 화력발전소 증설을 중심으로 -)

  • Jung, Chang Hoon;Pokarel, Rajib;Lee, Hee Kwan
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.195-208
    • /
    • 2009
  • The power plant is well known to influence air pollution as well as emission of green house gas. Because of increasing demand on electricity, the government set up the electric support action plan every 2 years. In this research, the impacts of power plants on the environment and region was studied. The study was focused on the establishment of power plant in Incheon area based on the 3rd electric support action plan. According to the 3rd electric support action plan, almost 80% of power plant in metropolitan area is planned to be built in Incheon area. The main influences of establishment of power plant are emissions of $SO_x$, $NO_x$ and PM and exceed the allocated local industry emissions, which means the emission allocation of other industry is difficult. In additions, the power plant exhaust $CO_2$ much more than other types of fuel such as waterpower generation, atomic power station. Although several supports are given in local government, these cannot cover the whole cost due to establishment of power plant. Subsequently, this study suggest the additional policy based on local consideration is needed and the current electricity distribution system should be reconsidered fundamentally in the lang term.

Analysis Result for the Technical Development Reducing Standby Power in Domestic Major Electric Appliances : The Electricity Energy Saving Effect (국내 주요 가전제품의 대기전력저감기술 성과 분석 : 에너지절약 효과를 중심으로)

  • Lee, Eun-Young;Joung, Soon-Hee
    • Journal of Families and Better Life
    • /
    • v.27 no.4
    • /
    • pp.141-160
    • /
    • 2009
  • Recently, some policies for reducing standby power, which has quite an effect on electricity consumption, have been employed all over the world. This study surveys the present condition of standby power for major electric home appliances during three years and analyzes the result of technical development reducing standby power. It presents how the industry paid attention to applying the technique of reducing standby power to electric appliances and how it affects the product's energy efficiency. We survey the standby power's change for six items, which were selected from the major electric appliances available on the market. It analyzes the difference of standby power consumption between appliances with a standby power reducing technique and those without during the latest three years. The amount of the average standby power is also compared. The comparison data confirms that the industry's effort and application of reducing standby power contribution has contributed to increasing an appliance's energy efficiency. This study restricted the analyzed items to six appliances, which has been a low volunteered involvement in the standby power reducing program. It is important for reducing standby power consumption of appliances because it contributes to saving electric energy at home and abroad. The development of the standby power reducing technique is needed for more appliances. Along with the development of the standby power reducing technique in the industrial field, it also necessary for consumers to enlarge their understanding of standby power reduction for economic, social, and environmental values.

A Study on Electricity Generation of Marine Sediment Cells (해양 퇴적토전지의 발전 특성에 대한 연구)

  • Lee, Eun-Mi;Kwon, Sung-Hyun;Rhee, In-Hyoung;Park, Byung-Gi;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.647-653
    • /
    • 2011
  • Sediment cell is renewable energy which produces electric energy using immanent ingredients or reducing power of marine sediment as natural resources. Also the cell has an advantage that environmental pollution can be reduced through conversion of organic and inorganic contaminants into inert matter with generation of the energy. In this paper, we compared characteristics of electricity generation of the two different sediment cells, and investigated the regeneration effect of the sediment cells with manipulation of the sediment such as mixing and re-positioning. The results showed that 14.1 $W/m^2$ of power was obtained with the aluminum electrode, and the mixing of the sediment could increase the power by 4 $W/m^2$ compared to the control. Also, mixing the sediment has kept electricity for 4 weeks at a relatively constant level, which implied 'fuel regeneration effect'. Meanwhile, the sediment cell was proved to be effective in reduction of COD, which was up to 28.6%.

Enabling Fine-grained Access Control with Efficient Attribute Revocation and Policy Updating in Smart Grid

  • Li, Hongwei;Liu, Dongxiao;Alharbi, Khalid;Zhang, Shenmin;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1404-1423
    • /
    • 2015
  • In smart grid, electricity consumption data may be handed over to a third party for various purposes. While government regulations and industry compliance prevent utility companies from improper or illegal sharing of their customers' electricity consumption data, there are some scenarios where it can be very useful. For example, it allows the consumers' data to be shared among various energy resources so the energy resources are able to analyze the data and adjust their operation to the actual power demand. However, it is crucial to protect sensitive electricity consumption data during the sharing process. In this paper, we propose a fine-grained access control scheme (FAC) with efficient attribute revocation and policy updating in smart grid. Specifically, by introducing the concept of Third-party Auditor (TPA), the proposed FAC achieves efficient attribute revocation. Also, we design an efficient policy updating algorithm by outsourcing the computational task to a cloud server. Moreover, we give security analysis and conduct experiments to demonstrate that the FAC is both secure and efficient compared with existing ABE-based approaches.

Field Control Type Electrostatic Charge Neutralizer (전계 제어형 정전하 중화장치)

  • Jeong, Seok-Hwan;Lee, Dae-Hui;Mun, Jae-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.469-474
    • /
    • 1999
  • Methods and systems to remove static electricity are requested in the field of industry because the static electricity causes a flammable gas explosion or fire and a reduction of production rate in manufacturing semiconductor devices and so on. This paper is a basic study about a new structure of electrode system to control the quantities of generated ions and to solve the problem of dust attachment to needle electrode. In addition, a new type field controlled electrostatic charge neutralizer was proposed, and it could control the electric field in the end of the needle electrode by controlling the voltage of the third electrode around the tip of the needle electrode. As aresult, it was possible to control the quantities of generated ion by controlling the electric field in the needle electrode with the third electrode, which shows the possibilities to solve the nonequilibrium of generated ions in ac power source and the problem of the dust in the needle electrode.

  • PDF

A Study of Dynamic Characteristics of Segmented Shape Memory Alloy Wire (구간 분할된 형상기억합금 와이어의 동특성에 관한 연구)

  • Jeong S.H.;Kim J.H.;Kim G.H.;Lee S.H.;Shin S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.329-330
    • /
    • 2006
  • The research and development of an actuator are accelerating in the robotics industry. The electricity polymer and SMA actuator are designed simply and are produced a lot of forces per unit volume. Their motions are similar to human's motion, But the repeatability of the electricity polymer actuator is lower. The reaction velocity of the SMA actuator is slow and the travel is short. In this paper, the dynamic characteristic of the segmented SMA is studied. The SMA wire is divided by using the Thermo-electric module(TEM) to control each of segments independently. The MOSFET circuit is used to supply constant currents fer the Thermo-electric module(TEM). The hysteresis and displacement of the SMA wire according to load are measured.

  • PDF

Biofouling and Microbial Induced Corrosion -A Case Study

  • Mohammed, R.A.;Helal, A.M.;Sabah, N.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • In industrial and fluid handling systems, frequently the protective film forming materials suffer from severe corrosion due to microbial effects. As an example, various micro-organisms, including bacteria, exist in seawater normally fed to power and desalination plants. Unless seawater intakes are properly disinfected to control these microbial organisms, biological fouling and microbial induced corrosion (MIC) will be developed. This problem could destroy metallic alloys used for plant construction. Seawater intakes of cogeneration plants are usually disinfected by chlorine gas or sodium hypochlorite solution. The dose of disinfectant is designed according to the level of contamination of the open seawater in the vicinity of the plant intake. Higher temperature levels, lower pH, reduced flow velocity and oxidation potential play an important role in the enhancement of microbial induced corrosion and bio-fouling. This paper describes, in brief, the different types of bacteria, mechanisms of microbiological induced corrosion, susceptibility of different metal alloys to MIC and possible solutions for mitigating this problem in industry. A case study is presented for the power plant steam condenser at Al-Taweelah B-station in Abu Dhabi. The study demonstrates resistance of Titanium tubes to MIC.

Analysis and Prediction of Energy Consumption Using Supervised Machine Learning Techniques: A Study of Libyan Electricity Company Data

  • Ashraf Mohammed Abusida;Aybaba Hancerliogullari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.10-16
    • /
    • 2023
  • The ever-increasing amount of data generated by various industries and systems has led to the development of data mining techniques as a means to extract valuable insights and knowledge from such data. The electrical energy industry is no exception, with the large amounts of data generated by SCADA systems. This study focuses on the analysis of historical data recorded in the SCADA database of the Libyan Electricity Company. The database, spanned from January 1st, 2013, to December 31st, 2022, contains records of daily date and hour, energy production, temperature, humidity, wind speed, and energy consumption levels. The data was pre-processed and analyzed using the WEKA tool and the Apriori algorithm, a supervised machine learning technique. The aim of the study was to extract association rules that would assist decision-makers in making informed decisions with greater efficiency and reduced costs. The results obtained from the study were evaluated in terms of accuracy and production time, and the conclusion of the study shows that the results are promising and encouraging for future use in the Libyan Electricity Company. The study highlights the importance of data mining and the benefits of utilizing machine learning technology in decision-making processes.