• Title/Summary/Keyword: Electricity Supply

Search Result 649, Processing Time 0.031 seconds

Strategic Vitalization Method of AMP Installation through SWOT/AHP Analysis (SWOT/AHP 분석을 통한 전략적 AMP 설치 활성화 방안)

  • Kim, In-Ho;Lee, Kang-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.49-60
    • /
    • 2019
  • Recently the concentration of fine dust and ultra fine dust becomes so bad, which seriously threatens the health and even the life of people. So, government started to investigate several ways to reduce the amount of fine dust and ultra fine dust. From a few years ago it has been known that ships anchored at port emit a lot of pollution and seriously affect air quality of neighboring cities. To reduce the pollution emitted by ship AMP (Alternative Maritime Power Supply) has been proposed, which uses the electricity instead of bunker C oil or diesel. Many developed countries already installed AMP to improve air quality in port area. Korea is in the stage of planning to install AMP at port. However, there are many complicated problems to be handled before AMP installation. Due to huge initial cost and long period of construction ship owner and habour operating company are reluctant to AMP installation. And there are serious technological difficulties in constructing AMP in existing harbour. Lack of AMP core technology and operational difficulties of AMP are also big challenges to be conquered. In this study SWOT/AHP method is used to find strategic and efficient ways to handle above complicated challenges and then to vitalize the AMP installation.

Analysis of Performance of Building Integrated PV System of Cold Facade type (Cold facade형 BIPV시스템의 발전성능 분석)

  • Kim, Hyun-II;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Shu, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.275-280
    • /
    • 2008
  • Photovoltaic(PV) permit the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of BIPV system of cold facade type and analyzed of performance of BIPV system of cold facade type. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 73.1%.

  • PDF

Evaluation of seasonal performance for single-stage desalination system with solar energy (1단 증발식 해수담수화 시스템의 계절별 성능 평가)

  • Kwak, Hee-Youl;Joo, Hong-Jin;Joo, Moon-Chang;Kim, Jung-Bae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.221-226
    • /
    • 2008
  • This study was carry out evaluation of seasonal performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a spring season day average $392W/m^2$, the daily fresh water showed to produce about 340liter. In a summer season day average $296W/m^2$, the daily fresh water showed to produce about 328liter. In a autumn season day average $349W/m^2$, the daily fresh water showed to produce about 277liter. In a winter season day average $342W/m^2$, the daily fresh water showed to produce about 271liter.

  • PDF

Evaluation of long-term performance for single-stage desalination system with solar energy (태양에너지 해수담수화 실증시스템 장기 운전 열성능)

  • Kwak, Hee-Youl;Yoon, Eung-Sang;Joo, Moon-Chang;Joo, Hong-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.172-177
    • /
    • 2008
  • This study was carry out evaluation of long-term performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a clear day more than 400W/$m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to October, 2008 for 2 years, solar irradiance daily averaged was measured 370W/$m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

A Basic Study on the Optional Composition for Apartment Housing Design (아파트 단위주호 개발에서 선택사양 구성을 위한 기초연구)

  • Cho, Sung-Heui;Lee, Eun-Joo
    • Journal of the Korean housing association
    • /
    • v.21 no.3
    • /
    • pp.67-76
    • /
    • 2010
  • The purposes of this study are to understand residents' needs in regard to living space and to suggest how to provide layout options for the infill, based on their needs, so that the residents can change their living space to suit their own need. This study analyzed residents' needs in terms of living spaces through literature reviews on apartment remodeling and related previous studies. The results are as follows: First, the residents remodeled the various infill, and remodeling works are then classified into five infill groups according to the flexible features: 1) structural elements, such as flooring, ceilings, interior walls, and windows/doors; 2) equipment elements, such as lighting and electricity, electrical wiring, heating arrangements, and water supply & drainage systems: 3) finishing material elements, such as finishing materials for floors, walls, and ceilings, skirting boards, moldings, and art walls; 4) furniture elements, such as built-in wardrobes, storage closets, and kitchen cabinets; and 5) bathroom facility elements such as faucets and sinks. Second, based on the remodeling features, four ways to provide options can be suggested. 1) options are provided for each room; 2) options are provided in connection with structural elements; 3) options are provided for each finishing material element; and 4) options are provided with the combinations of different bathroom facilities.

A Simulation based Study on the Economical Operating Strategies for a Residential Fuel Cell System (시뮬레이션 기반 가정용 연료전지 시스템의 경제적 운전전략에 관한 연구)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.104-115
    • /
    • 2009
  • In case of residential fuel cell system, it is significant to stably supply heat and power to a house with high efficiency and low cost for the successful commercialization. In this paper, the control strategy analysis has been performed to minimize the total cost including capital and operating cost of the residential fuel cell system. The proposed analysis methodology is based on the simulator including the efficiency models as well as the cost data for fuel cell components. The load control strategy is the key factor to decide the system efficiency and thus the cost analysis is performed when the fuel cell system is operated for several different load control logics. Additionally, annual efficiency of the system based on the seasonal load data is calculated since system efficiency is changeable according to the electric and heat demand change. As a result, the hybrid load control combined electricity oriented control and heat oriented control has the most economical operation.

Evaluation of Interconnection Capacity of SCOGNs to the power Distribution Systems from the Viewpoint of Voltage Regulation (전압조정 측면에서 본 소형 열병합발전 배전계통 도입량 평가)

  • 최준호;김재철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1096-1102
    • /
    • 1999
  • This paper discusses the evaluation of interconnection capacity of small cogeneration(SCOGN) systems to the power distribution systems from the viewpoint of voltage regulation. Power utilities are required to keep the customers' voltage profile over a feeder close to the rated value under all load conditions. However, it is expected that the interconnection of SCOGNs to the power distribution systems impacts on the existing voltage regulation method and customers' voltage variations. Therefore, SCOGNs should be integrated to the automated power distribution systems to prevent interconnection problems and supply high quality electricity to the customers. For these reasons, we should proceed with the evaluation of interconnection capacity of SCOGNs to the power distribution systems. However, it is generally impossible to perform actual testing on the power distribution systems, and standardized methodologies and guidelines are not developed to evaluate it. The criterion indexes for voltage regulation and variations are presented in order to evaluate the interconnection capacity of SCOGNs to the power distribution systems. In addition, the evaluation methodology of interconnection capacity of SCOGNs for power distribution systems is presented. It is expected that the resulted of this paper are useful for power system planners to determine the interconnection capacity of SCOGNs and dispersed storage and generation (DSG) systems to the power distribution systems.

  • PDF

An Efficient Hybrid LED Street Lighting Management System Design using Standalone Solar Photovoltaic (독립형 태양광 발전을 이용한 효율적인 하이브리드 LED 가로등 조명관리 시스템 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.984-993
    • /
    • 2014
  • In this paper, we propose a design for an efficient hybrid LED street lighting management system using standalone solar photovoltaic. The proposed efficient hybrid LED street lighting management system was composed of hybrid power conditioning system, gateways, LED street lights and a monitoring server. The hybrid power conditioning system was designed to charge produced power by solar photovoltaic panels in day time, and supply power to the LED street lights in night time. If there is insufficient power, the system was designed to operate using firm power, because the system utilizes photovoltaic power. A system control algorithm allied to the lighting management system, and experimented by being configured to the functions that are able to perform real-time monitoring and remote control through the lighting management system even when absent. In the result of the efficiency analysis of the hybrid lighting management system proposed in this paper, we were able to increase the energy efficiency compared to existing lighting control systems by reducing power consumption and electricity costs.

A Study on Effective Control Methodology for DC/DC Converter (DC/DC 컨버터의 효율적인 제어기법 연구)

  • Lho, Young Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.756-759
    • /
    • 2014
  • DC/DC converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. The converters can be applied in the regenerative braking of DC motors to return energy back to the supply, resulting in energy savings for the systems at periodic intervals. The fundamental converter studied here consists of an IGBT (Insulated Gate Bipolar mode Transistor), an inductor, a capacitor, a diode, a PWM-IC (Pulse Width Modulation Integrated Circuit) controller with oscillator, amplifier, and comparator. The PWM-IC is a core element and delivers the switching waveform to the gate of the IGBT in a stable manner. Display of the DC/DC converter output depends on the IGBT's changes in the threshold voltage and PWM-IC's pulse width. The simulation was conducted by PSIM software, and the hardware of the DC/DC converter was also implemented. It is necessary to study the fact that the output voltage depends on the duty rate of D, and to compare the output of experimental result with the theory and the simulation.

SHIELDING DESIGN ANALYSES FOR SMART CORE WITH 49-CEDM

  • Kim, Kyo-Youn;Kim, Ha-Yong;Cho, Byung-Oh;Zee, Sung-Quun;Chang, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • In Korea, an advanced reactor system of 330MWt power called SMART (System integrated Modular Advanced ReacTor) is being developed by KAERI to supply energy for seawater desalination as well as electricity generation. A shielding design of the SMART core with 49 CEDM is established by a two-dimensional discrete ordinates radiation transport analyses. The DORT two-dimensional discrete ordinates transport code is used to evaluate the SMART shielding designs. Three axial regions represent the SMART reactor assembly, each of which is modeled in the R-Z geometry. The BUGLE-96 library is used in the analyses, which consists of 47 neutron and 20 gamma energy groups. The results indicate that the maximum neutron fluence at the bottom of reactor vessel is $5.89 {\times} 10^{17}\;n/cm^2$ and that on the radial surface of reactor vessel is $4.49 {\times} 10^[16}\;n/cm^2$. These results meet the requirement, $1.0 {\times} 10^{20}\;n/cm^2$, in 10 CFR 50.61 and the integrity of SMART reactor vessel during the lifetime of the reactor is confirmed.

  • PDF