• Title/Summary/Keyword: Electricity Supply

Search Result 650, Processing Time 0.02 seconds

Customer Baseline Load Calculation using Time Series Prediction Technique in Energy Efficiency Programs (시계열 모델을 이용한 행동기반 에너지 효율화 프로그램의 고객기준부하 산정 방안)

  • Koh, Sae-Hyun;Joo, Sung-Kwan;Lee, Jae-Hee;Moon, Guk-Hyun;Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • As global demand for energy, energy prices, and power generation has increased worldwide, the government is turning to supply-oriented electricity supply and demand policies, such as behavior-based energy efficiency programs. In order to measure the implementation effect of the behavior-based energy efficiency program, the energy reduction must be accurately calculated by calculating the customer baseline load.

From Renewable Electricity to Green Hydrogen: Production and Storage Challenges for a Clean Energy Future

  • Hidouri Dalila;Rym Marouani;Cherif Adnen
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.171-179
    • /
    • 2024
  • Decentralized energy production without greenhouse gas emissions from renewable energy sources despite their advantage and environmental impact suffers from the problem of intermittent and fluctuating supply depending on weather conditions. To overcome this problem, energy storage is essential to enable reliable and continuous supply of the load. Hydrogen is one of the most promising energy storage solutions because it is easily transportable and can be used as fuel or as a raw material for the production of other chemicals.In this article, we will focus on hydrogen energy storage techniques using photovoltaic systems. We will review the different types of hydrogen storage structuresfor several applications, including residential and commercial buildings, as well as industry and transportation (electric vehicles using PEFMC fuel cells).

Development of the method for optimal water supply pump operation considering disinfection performance (소독능을 고려한 송수펌프 최적운영기법 개발)

  • Hyung, Jinseok;Kim, Kibum;Seo, Jeewon;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.421-434
    • /
    • 2018
  • Water supply/intake pumps operation use 70~80% of power costs in water treatment plants. In the water treatment plant, seasonal and hourly differential electricity rates are applied, so proper pump scheduling can yield power cost savings. Accordingly, the purpose of this study was to develop an optimal water supply pump scheduling scheme. An optimal operation method of water supply pumps by using genetic algorithm was developed. Also, a method to minimize power cost for water supply pump operation based on pump performance derived from the thermodynamic pump efficiency measurement method was proposed. Water level constraints to provide sufficient disinfection performance in a clearwell and reservoirs were calibrated. In addition, continuous operation time constraints were calibrated to prevent frequent pump switching. As a result of optimization, savings ratios during 7 days in winter and summer were 4.5% and 5.1%, respectively. In this study, the method for optimal water pump operation was developed to secure disinfection performance in the clearwell and to save power cost. It is expected that it will be used as a more advanced optimal water pump operation method through further studies such as water demand forecasting and efficiency according to pump combination.

A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation (태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구)

  • Choi, Hoi-Kyun
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

Impacts of Low-priced of Industrial Electricity and Loose Environment Regulations on Investment Incentives of Inward Foreign Direct Investment of the Manufacturing Industries in Korea (외국계 제조업체 투자유인으로서의 저렴한 전기요금과 느슨한 환경규제 영향력)

  • Kim, Jung A;Lee, Hee Yeon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.231-248
    • /
    • 2014
  • The role of the foreign direct investment is very crucial for the regional economic growth nowadays. The inward FDI in Korea has been increased since the Act of foreigner investment promotion in 1998. The municipal and national government have designated the special industrial zones and supported the diverse incentives for the foreign investment companies. The service sector had a large share of inward FDI. However, manufacturing sector overtook the service sector as the largest FDI in 2009. This study focuses on the greenfield manufacturing FDI, which was established from 1999 to 2012 in Korea. In order to find out the impacts of low-priced industrial electricity and loose environmental regulations on choosing Korea, this paper did in-depth interviews with MOTIE, Korea industrial complex, Korea Trade-Investment Promotion Agency, some FDI companies. Investment incentives such as low price of domestic industrial electricity strongly affect why manufacturing FDI companies choose Korea to invest. The Korean government has also acknowledges that low-price policy can internationally compete to attract FDI. There is a possibility that FDI energy-guzzling industrial companies may choose for Korea to use the low-priced electricity, raising the issue of supply-demand of electricity of Korea in the future.

  • PDF

Scenario Analysis of Low-Carbon Generation Mix Considering Social Costs (사회적 비용을 고려한 저탄소 전원구성의 시나리오 분석)

  • Park, Jong-Bae;Cho, Young-Tak;Roh, Jae Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.173-178
    • /
    • 2018
  • This study organizes scenarios on the power supply and demand plans considering the uncertainties and the portion of distributed energy resources. In analysing the scenarios, it estimates total electricity supply cost in the social aspect, natural gas demand and air pollutants emission including carbon dioxide. Also the analysis is performed to estimate the marginal cost of carbon dioxide reduction for the fuel switching from coal to liquified natural gas. In result, the social cost could be decreased by replacing some portion of renewable energy by LNG-based combined heat and power and delaying the construction of large base-load generators such as coal and nuclear plants. The marginal carbon dioxide reduction cost by fuel switching is in plausible range for fuel switching to be an option for carbon dioxide emission reduction when the social cost is considered.

A Study on Variation of the Dynamic Characteristic of Supply Voltage According to the Track Environment and Spatial Distribution as Driving of Urban Transits (도시철도차량의 운행 선로환경 및 공간적 분포에 따른 공급전압 동특성 변화)

  • Kim, Yang-Su;Chang, Chin-Young;Lee, Ki-Sik;Koo, Kyung-Wan;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1380-1386
    • /
    • 2012
  • It is important to consider supply voltage stability in case of design and construction of a substation at electric railway because a urban transit is operated by electricity and it is driven simultaneous in the same section. This paper study on variation of the dynamic characteristic of supply voltage according to the track environment and spatial distribution as driving of urban transits. Simulation tool, TOM(Train Operations Model) software is used to ensure stability of feeder system being used around the world. As results of simulation, voltage of the contact wire is in limits on driving operation diagram of urban transits. Also, it has confirmed that there is a correlation the phase current, depending on the speed of urban transit and track environment like vertical gradients and curve radius.

Design and Control Method for Critical Load Supply Equipment using MCFC Electricity Generation Systems (대용량 MCFC 발전시스템을 이용한 비상부하 전력 공급 장치 설계 및 제어방법)

  • Kim, Dong-Hee;Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Kawk, Cheol-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.20-29
    • /
    • 2011
  • This paper proposes critical load following back-up system using MCFC stack. This system enables MCFC generation system to supply power to critical load without UPS and to generate rated power under grid fault state. This back-up system includes 'Load Leveler' that is connected with 3-phase inverter and is controlled by additional algorithm that includes critical load following. The proposed system and algorithm are verified by computer simulation based on 5kW system.

A Study on the Calculation of Thermal Consumption Unit of Apartment (공동주택의 열사용량원단위 산정에 관한 연구)

  • Lee, Wang-Je;Kang, Eun-Chul;Lee, Euy-Joon;Shin, U-Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.388-393
    • /
    • 2014
  • Energy consumption unit in a building is classified according to uses of electricity, gas, and oil, and it has been studied steadily as a material for establishing policy standards for energy saving in buildings. Meanwhile, consumption unit in apartment house can be calculated differently according to its survey method and area standard. Therefore, with the necessity of reestablishing energy consumption unit, this study has researched thermal energy consumption, Supply dwelling area Exclusive dwelling area, completion year and housing type of 23,791 households of 31 complex in Daejeon. As a result, (1) there was about 20% difference between supply and exclusive dwelling areas. (2) On the basis of exclusive dwelling area, thermal energy consumption unit was calculated as $104.9kWh/m^2{\cdot}a$ in 2010, $104.6kWh/m^2{\cdot}a$ in 2011, and $107.7kWh/m^2{\cdot}a$ in 2012.

The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1658-1663
    • /
    • 2021
  • Research on climate change and global warming on the power generation systems are rapidly increasing because of the Importance of the sustainable energy supply, thus the electricity supply since its growing share, in the end, uses energy supply. However, some researchers conducted this field, but many research gaps are not mentioned and filled in this field's literature since the lack of general statements and the quantitative models and formulation of the issue. In this research, an exergy-based model is implemented to model a set of six power generation technologies (combined cycle, gas turbine, nuclear plant, solar PV, and wind turbine) and use this model to simulate each technology's responses to climate change impacts. Finally, using these responses to define and calculate a formulation for the relationship between the system's energy performance in different environmental situations and a dimensionless index to quantize each power technology's reliability against the climate change impacts called the Pahlev reliability index (P-index) of the power technology. The results have shown that solar and nuclear technologies are the most, and wind turbines are the least reliable power generation technologies.