• Title/Summary/Keyword: Electricity Supply

Search Result 650, Processing Time 0.021 seconds

Capacitor Bank Assisted Battery Fed Boost Converter for Self-electricity-generated Transportation Cart System (자가발전 이동 카트 시스템을 위한 배터리 - 캐패시터 뱅크를 갖는 부스트 컨버터)

  • Kong, Sung-Jae;Yang, Tae-Cheol;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A problem exists in the conventional transportation cart applications, in which an external power supply with mechanical contact connection (bus bar connection) is required to drive the motor. Therefore, continuous effort for maintenance is required, aside from the expensive bus bar connector. To solve this problem, a self-electricity-generated transportation cart system without bus bar has recently been introduced. In this system, a battery needs to store the power of the generated wheel, and a boost converter, which converts the low battery voltage to high bus voltage to drive the motor inverter, is necessary. However, since the instantaneous large current required for starting the motor is supplied from the battery, a battery with large size and volume should be adopted to withstand this large current. In this study, a boost converter that can supply a large instantaneous current by using super Capacitor string is proposed. The proposed converter can be realized with a small size and volume compared with the conventional battery-fed boost converter. Operational principles, analysis, and design of the proposed converter are presented, and experimental results are provided to validate the proposed converter.

A Study on Improved Operation of Apartment Heating System in a Machine Room (공동주택 기계실 난방설비 운전 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • This study proposes an idea for energy saving in apartment machine rooms. A conventional district heating system is equipped with constant-flow pumps and bypass valves to regulate pump differential pressure. Each family unit is equipped with a constant-flow on/off valve. This leads to excessive hot water circulation and a high return temperature. To reduce energy loss, this study assumes that each family unit is renovated with a heating valve which regulates the return temperature at $35^{\circ}C$. The hot water supply pump is also replaced with a pump with an inverter to vary flow rate. Expected energy savings is then estimated from field test data. According to the results, pump electricity consumption was reduced by 6,100 kWh for a family unit building over about half a year. The supply temperature can also be lowered by $5^{\circ}C$, which can contribute to a production of electricity of 10.3 kWh/ton of hot water.

A Mechanism of IPP's(Coal Fired) Optimal Power Generation According to Introduction of RPS(Renewable Portfolio Standard) (RPS제도 도입에 따른 민간 석탄 발전소의 최적 발전량 결정 메커니즘 연구)

  • Ha, Sun-Woo;Lee, Sang-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1135-1143
    • /
    • 2016
  • A private company's 1,000 MW coal-fired power plant will be the first coal-fired power plant that was included in the 5th 'Basic Plan on Electricity Demand and Supply' (2010). Now it is facing the task to abide by the RPS(Renewable Portfolio Standard) policy after commercial operation. If they fail to supply the necessary REC (Renewable Energy Certificate) mandated by the RPS policy, they are subject to be fined by the government and forced to modify the cost function to reflect the burden. Eventually the company's coal-fired power plant will be forced to reduce generation to maximize profit because the amount of electricity generated by the power plant and the REC obligation is positively correlated. This paper analyzed the change of cost function of private coal-fired power plant according to the introduction of RPS policy from the viewpoint of private company, and finally proposed the optimal generation to maximize the profit of private coal-fired power plant under the current RPS policy.

Renewable Energy Potentials and Promotion Policies in Indonesia (인도네시아 신재생 에너지 잠재력 및 보급 정책)

  • Yurnaidi, Zulfikar;Kim, Suduk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.137.1-137.1
    • /
    • 2010
  • For Indonesia, sustainable energy supply is an important factor to preserve the stable economic growth. One important strategy is development of renewable energy, which has not been fully exploited yet. The paper examines the potency of renewable energy in Indonesia. Currently, biomass composes 23% of total primary energy supply, while geothermal and hydropower has a combined share of 3%. But according to the overall potency of renewable energy, hydropower is found to have the highest available resource of 76 GW, followed by biomass and geothermal by 49.81 GW and 28.53 GW, respectively. Although the solar radiation is only at modest level ($4.80kWh/m^2/day$), the tropical all year sunlight can boost the competitiveness of solar photovoltaic and thermal application. As for wind energy, the average speed of 3-6 m/s requires the development of low speed wind turbine. The examination of electricity and petroleum product prices through international comparison for non-OECD countries shows fifth lowest price level for both of petroleum products and electricity for industrial use. As for household electricity price, Indonesia is placed the second among all the countries compared. The energy subsidy and price structure are examined in detail because it could be a source of hindrance to renewable energy promotion. The examination of renewable energy potency in this study could provide insights about recent development of renewable energy in Indonesia. As an outcome of policy examination, the price comparison analysis suggests Indonesia to reduce or even remove the energy subsidies in the long run. These findings can be utilized to formulate effective policies for renewable energy promotion.

  • PDF

Analysis of the Impact of the 8th Basic Plan for Long-term Electricity Supply and Demand on the District Heating Business Through Optimal Simulation of Gas CHP (가스 열병합발전 최적 시뮬레이션 분석을 통한 집단에너지 사업자에 미치는 8차 전력 수급계획의 영향 분석)

  • Kim, Young Kuk;Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.655-662
    • /
    • 2018
  • To respond effectively to climate change following the launch of the new climate system, the government is seeking to expand the use of distributed power resources. Among them, the district heating system centered on Combined Heat and Power (CHP) is accepted as the most realistic alternative. On the other hand, the government recently announced the change of energy paradigm focusing on eco-friendly power generation from the base power generation through $8^{th}$ Basic Plan for Long-term Electricity Supply and Demand(BPE). In this study, we analyzed the quantitative effects of profit and loss on the CHP operating business by changing patterns of the heat production, caused by the change of energy paradigm. To do this, the power market long-term simulation was carried out according to the $7^{th}$ and $8^{th}$ BPE respectively, using the commercialized power market integrated analysis program. In addition, the CHP operating model is organized to calculate the power and heat production level for each CHP operation mode by utilizing the operating performance of 830MW class CHP in Seoul metropolitan area. Based on this, the operation optimization is performed for realizing the maximum operating profit and loss during the life-cycle of CHP through the commercialized integrated energy optimization program. As a result, it can be seen that the change of the energy paradigm of the government increased the level of the ordered power supply by Korean Power Exchange(KPX), decreased the cost of the heat production, and increased the operating contribution margin by 90.9 billion won for the 30 years.

Economic Welfare Study on Seasonal and Time Period Electricity Pricing (계시별 전력가격에 대한 경제적 후생 연구)

  • Yoo, Young-Hoon;Kim, SungSoo
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.519-547
    • /
    • 2005
  • The aim of this study is to analysis how economic welfare lost happens within the present korea seasonal and time period electricity pricing system and find out reasonable electricity price system acceptable during the transitional period of korea electricity industry restructuring To analyze economic welfare lost in the electricity industry, in advance seasonal and time periodic 9 demand curves(summer, spring &fall, winter/peak-load time, middle-load time, low-load time) and one market supply curve are made and then using these demand and supply curve, seasonal and time periodic market equilibrium prices is calculated. Finally, comparing these market equilibrium prices with present regulated classified seasonal and time periodic prices, the whole economic welfare lost in the electricity industry is calculated. The result of this study shows that in 2002, the total economic welfare lost in electricity industry is 137,770 million Won and under present price system, the worst welfare lost is happening seasonally in spring & fall, time periodically in the middle-load time. Specifically analyzing the characteristics of welfare lost, especially on the industry customers and service customers which are applied in seasonal and time periodic pricing, for the industry customers, the welfare lost calculated in this class occupies 51% of the total welfare lost in the whole electricity industry and the worst welfare lost is happening seasonally in spring & fall, time periodically in the middle-load time. For service customers, the welfare lost calculated in this class occupies 13% of the total welfare lost in the whole electricity industry and the worst welfare lost is happening seasonally in summer, time periodically in the peak time Finally, this study was made based on the year of 2002 and KEPCO has practiced two times of rate change until now. The result of rate change was positively analyzed in the direction of economic welfare improvement(welfare improvement achieved by 16.3% compared to 2002 result).

  • PDF

Consistency in the Basic Plan on Electricity Demand and Supply and Social Costs (전력수급기본계획의 정합성과 사회적 비용)

  • LEE, Suil
    • KDI Journal of Economic Policy
    • /
    • v.34 no.2
    • /
    • pp.55-93
    • /
    • 2012
  • In Korea, energy policies are actualized through various energy-related plans. Recently, however, as high-ranking plans, which are very vision-oriented, continually set higher sector-by-sector goals, subordinate action plans, which require consistency, encounter distortions in their establishment process. Also, each subordinate action plan reveals limitations in terms of securing flexibility of the plan in responding to uncertainties of the future. These problems pose potential risks such as causing huge social costs. In this regard, with an aim to provide empirical evidence for discussions on improving the procedure for developing and executing Korea's energy plans, this study mainly analyzes the Basic Plan on Electricity Demand and Supply-one of the most important subordinate action plans-in order to explain the problems of the Basic Plan in a logical manner, and potential problems that could occur in the process of sustaining consistency between the Basic Plan and its higher-ranking plans. Further, this paper estimates the scale of social costs caused by those problems assuming realistic conditions. According to the result, in the case of where maximum electric power is estimated to be 7% (15%) less than the actual amount in the Basic Plan on Electricity Demand and Supply, the annual generation cost will rise by 286 billion won and (1.2 trillion won) in 2020. Such social costs are found to occur even when establishing and executing the Basic plan according to the target goal set by its higher-ranking plan, the National Energy Master Plan. In addition, when another higher-ranking GHG reduction master plan requires the electricity sector to reduce emissions by additional 5% in the GHG emissions from the right mix in electricity generation with 'zero' cost of carbon emission, the annual generation cost will rise by approximately 915 billion won in 2020. On the other hand, the analysis finds that since economic feasibility of electric powers in Korea varies significantly depending on their type, Korea is expected to face very small potential social costs caused by uncertainties over the future price of carbon dioxide in the process of establishing the Basic Plan.

  • PDF

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

The Economic Feasibility Analysis of 100-MW Power-to-Gas System (100 MW급 Power-to-Gas 시스템의 사전 경제성 분석)

  • Ko, Areum;Park, Sung-Ho;Kim, Suhyun
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2020
  • According to the Korean Renewable Energy 3020 Implementation Plan, the installation capacity of renewable energy is expected to increase whereas technology for storing excess electricity and stabilizing the power supply of renewable energy sources is extremely required. Power-to-Gas is one of energy storage technologies where electricity is converted into gas fuel such as hydrogen and methane. Basically, Power-to-Gas system could be effectively utilized to store excess electricity generated by an imbalance between supply and demand. In this study, the economic feasibility analysis of Power-to-Gas reflecting the domestic situation was carried out. Total revenue requirement method was utilized to estimate the levelized cost of hydrogen. Validation on the economic analysis method in this study was conducted by comparison of the result, which is published by the International Energy Agency. The levelized cost of hydrogen of a 100-MW Power-to-Gas system reflecting the current economic status in Korea is 8,344 won kg-1. The sensitivity analysis was carried out, applying the main analysis economic factors such as electricity cost, electrolyser cost, and operating year. Based on the sensitivity analysis, the conditions for economic feasibility were suggested by comparing the cost of producing hydrogen using renewable energy with the cost of producing natural gas reformed hydrogen with carbon capture and storage.

A research of optimum supply reserve levels for stability of power system (전력계통 안정을 위한 공급예비력 적정수준에 대한 연구)

  • Ahn, Dae-Hoon;Kwon, Seok-Kee;Joo, Haeng-Ro;Shin, Jung-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • Because of the high increasing rate of load demand, these days the necessity of deciding what optimum reserve level is appropriate to most stably supply electricity is being emphasized. This research studies the downward tendency of reverve ratio by analyzing the trend of change of the network scale, reserve, and reserve ratio while optimum reserve has been increased as the network system scale grow up. This means, at this moment 6,000MW is optimum level for short term prospect of power supply and demand. And also, it has been analyzed that, as the annual peak load exceeded 50,000MW, confirming the amount of optimum reserve level is more stable than keeping 10 to 12% reserve ratio.

  • PDF