• Title/Summary/Keyword: Electricity Demand Analysis

Search Result 258, Processing Time 0.029 seconds

A Study on Comparative Analysis of Power Consumption Characteristics and the revulsion of investment on the application of a BESS in Subway Substation (도시철도 변전소 단위구간의 전력사용 실태 및 피크제어용 BESS 도입에 따른 경제성 분석)

  • Jung, Hyun-Ki;Kim, Se-Dong;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.85-90
    • /
    • 2014
  • This paper shows a reasonable demand power, that was made by the systematic and statistical way considering actual conditions, such as investigated transformer capacity and peak power for the last 6 years of subway substation customer as to AMR. In this dissertation, it is necessary to analyze the key features and general trend from the investigated data. It made an analysis of the feature parameters, such as average, standard deviation, median, maximum, minimum and thus it was carried by the linear and nonlinear regression analysis. And we studied on the application of a BESS. Analysis showed that the revulsion of capital is about 3 years and 4 months.

A Study on the Impact Analysis of Introducing Emission Trading System on CBP Market and Policy Implications (배출권거래제도 실시가 CBP 시장에 미치는 영향분석 및 대응방안 수립연구)

  • Kim, Myung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.667-679
    • /
    • 2015
  • The bearer of the power sector's ETS compliance cost is power consumer for the following reasons. Firstly, power companies are constrained in establishing appropriate strategies to comply with ETS regulations due to the structural differences between the domestic power market and emission trading system. In other words, because power companies do not have a right to determine price and production of electricity, they have to compete with other companies under disadvantaged conditions in the emission trading market. Secondly, because ETS compliance cost is part of power production costs as it is also clearly written in the national greenhouse gas reduction road-map and the second energy supply plan, the cost should be included in power price following the power market operation rule. Thirdly, the most effective method to reduce carbon emissions in power sector is to reduce power demand, which is efficiently achieved through raising power price to a realistic level. Low power price in Korea is the major cause of rising power demand which is also the major cause of rising GHG emission. Therefore, power sector's ETS compliance cost should be included in power price to encourage power consumers' actions on reducing power consumption. Fourthly, when externality cost occurs in the process of delivering public services, usually beneficiary pay principle is applied to identify the cost bearer. Since electricity is one representative public good, the bearer of power sector's ETS compliance cost is power consumer.

Cost-effectiveness Analysis and Application of DSM Program (DSM 프로그램의 비용효과 분석 및 적용)

  • Park, J.J.;Rhee, C.H.;Jo, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.692-694
    • /
    • 1996
  • Recently, rapid increase in electricity demand, tremendous financial need for new power plant construction, and environmental problem have led to search for more efficient energy production and energy conservation technologies. Due to the potential energy and cost savings to electric utilities, DSM plays an important role in the electric resource planning. However, implementation of cost-effective DSM program requires appropriate analysis methodologies and procedures. In this study, we present the cost-effectiveness analysis model for DSM program evaluation. We also present a case study to analyze DSM program.

  • PDF

Recommended Practice for Lighting Load Density by Feature Parameters and Regression Analysis depending on Power Consumption Characteristics in Subway Stations (회귀분석이론을 이용한 지하철 역사의 조명부하밀도 분석)

  • Jung, Hyeon-Ki;Kim, Se-Dong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.254-259
    • /
    • 2006
  • It is increased electrical energy consumption with the development of intelligence society in the subway station and thus an energy conservation through efficient use of electricity became more important. This paper shows a reasonable design load density in subway stations, that was made by the systematic and statistical way considering actual conditions, such as investigated electric equipment capacity, peak power consumption, demand factor, etc., for 34 subway stations and 10 electrical design offices. In this dissertation, it is necessary to analyse the key features and general trend from the investigated data. It made an analysis of the feature parameters, such as average, standard deviation, median, maximum, maximum and thus it was carried linear and nonlinear regression analysis.

  • PDF

Configuration and Economic Analysis of Cogeneration Systems using COGENMASTER model (COGENMASTER 모형을 이용한 열병합발전 시스템 구성 및 경제성 분석)

  • Park, J.J.;Jo, I.S.;Kim, C.S.;Kwun, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.27-29
    • /
    • 1994
  • Recently, the energy situation in Korea has been significantly changed. Rapid increase in electricity demand, tremendous financial need for new power plant construction, and environmental problem have led to search for more efficient energy production and energy conservation technologies. Due to the potential energy and cost savings to both electric utilities and industries, cogeneration will play an important role in the electric power and thermal energy supply in the future. In this study, we present the COGENMASTER computer model for optimal system configuration and economic analysis of cogeneration system. We also present several case studies with this module to analyze Korean cogeneration market. The result of this study will be useful to utility and industrial cogeneration planners for rapid analysis of cogeneration's value under a broad range of scenarios.

  • PDF

Analysis on the Trade-off between an Hydro-power Project and Other Alternatives in Myanmar

  • Aye, Nyein Nyein;Fujiwara, Takao
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.31-57
    • /
    • 2019
  • Myanmar's current power situation remains severely constrained despite being richly endowed in primary energy sources. With low levels of electrification, the demand for power is not adequately met. Cooperation in energy has been a major focus of future initiative for all developed and developing nations. If we want to solve climate change, and change our energy infrastructure, we need to be innovative and entrepreneurial in energy generation. This paper will help us in examining Bayesian MCMC Analysis for the parameters estimation among the arrival rates of disaster occurrences, firm's expected income-based electricity tariffs, and estimated R&D investment expenses in new energy industry. Focusing on Japan's electric power business, we would like to search the potential for innovative initiatives in new technological energy industry for the regional development and ecological sustainability in Myanmar.

The Environmental and Economic Impact of Trade between South Korea and the United States

  • Tae-Jin Kim;Nikolas Tromp
    • East Asian Economic Review
    • /
    • v.28 no.1
    • /
    • pp.37-67
    • /
    • 2024
  • This paper analyses carbon emissions and value-added embodied in trade between two large developed countries, South Korea and the United States, during 2000-2014. Using multi-regional input-output (MRIO) tables, our analysis reveals that carbon emissions and value-added embodied in exports grew by 19% and 101% for South Korea but shrank by 43% and 7% for the United States. As a result, South Korea experienced a 40% increase in net carbon exports and 243% increase in net value-added exports. At the industry level, the primary drivers of changes in carbon exports were electricity and basic materials. The majority of industries in witnessed improvements in carbon intensities suggesting improved environmental efficiency. While both countries achieved a decoupling of carbon emissions from value-added exports, substantial year-to-year and sectoral variations were observed. Finally, structural decomposition analysis indicates that domestic supply-side factors played a role in decreasing emissions whereas foreign demand-side factors contributed to emissions increases. In line with the main findings, various implications for policy and future research are discussed.

A Study on the Calculation of Standard Data for Energy Use Plan of Industry Complex (산업단지 에너지사용계획을 위한 표준데이터 산정 연구)

  • Suh, Kwang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.101-109
    • /
    • 2014
  • The Consultation about Energy Use Plan is prescribed by the Energy Use Rationalization Act. This study calculated the Standard Data for Energy Use Plan of Industry Complex by the 9th Korean Standard Industrial Classification Divisions so that the energy demand reflecting the industrial technology change and characteristics of Manufacturing Divisions would predict. To achieve this aim, analysis on thousands of data in Energy Consumption Report Forms reported from industries which annual consumption of energy exceeds 2,000toe from 2009 to 2010 was carried out. The results showed that calculated overall mean fuel basic unit decrease, electricity basic unit increase and energy basic unit increase compared to that of the Notification No. 2002-130 of the Ministry of Commerce, Industry and Energy, therefore it means that heat source of energy facilities transferred from fuel to electricity. Also resultingly suggests that the related notification, code etc. are amended as soon as possible.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Analysis of Power Pattern According to Load Types (부하 형태에 따른 전력패턴 분석)

  • Mi-Yong Hwang;Seung-Joon Cho;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.369-375
    • /
    • 2023
  • In this paper, we compared and analyzed the power load patterns of dormitory buildings and office buildings to use them as basic data (demand analysis and capacity design) for the design and operation of microgrids for multi-use facilities, and the following conclusions were got. During the daytime on regular weekdays, the power consumption load pattern of office buildings was relatively large at 264.0~332.3 kWh, and during the evening hours, the power consumption load pattern of dormitory buildings was relatively large at 233.0~258.3 kWh. In the case of vacation, during the daytime on weekdays, the power consumption load pattern of office buildings was relatively large at 279.1~407.4 kWh, and in the evening, the power consumption load pattern of dormitory buildings was relatively high at 280.1~394.1 kWh. During the daytime on regular weekends, the power consumption of dormitory-type buildings was relatively high at 133.5~201.6 kWh, and it was found that the power consumption of dormitory-type buildings appeared relatively high at 187.5~252.1 kWh. During a vacation in the daytime on weekends, the power consumption of dormitory-type buildings was found to be 186.5 kWh~ and 218.6 kWh. The increase in power consumption during a vacation (December-February) compared to normal (April-June) was thought to be due to an increase in electricity demand, and the reason for the higher power consumption in dormitory buildings during the vacation was due to reduced working hours in office buildings.