• Title/Summary/Keyword: Electrical tree

Search Result 589, Processing Time 0.022 seconds

Effect of different biochar formulations on the growth of cherry tomatoes

  • Lee, Jae-Han;Luyima, Deogratius;Ahn, Ji-Young;Park, Seong-Yong;Choi, Bong-Su;Oh, Taek-Keun;Lee, Chang-Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.931-939
    • /
    • 2019
  • Biochar is a solid carbon material made by pyrolyzing a biomass under limited oxygen conditions. Biochar has been reported to confer various benefits, such as increased soil productivity, pollutant absorption, and reduced greenhouse gas. In this study, oak pyrolyzed at 600℃ for 3 hours was either powdered or pelleted. Each of the biochar types was added to the soil at a rate of 2%. The control did not receive any biochar while a combination of the biochar and NPK treatment (biochar 2% + NPK) was also included. The cherry tomatoes were grown in greenhouse pots for 50 days to compare the growth characteristics of the different treatments. The cherry tomato with the powdered biochar 2% + NPK treatment had the heaviest plant fresh shoot weight of 276.4 g and the highest chlorophyll content of 59.3 SPAD. The control had the lightest plant fresh shoot weight of 44.2 g and a chlorophyll content of 26.5 SPAD. Both forms of biochar affected the chemical properties of the soil, increased the pH, electrical conductivity, available phosphate, total carbon and total nitrogen and positively influenced the cherry tomato growth and productivity. From the above results, therefore, both biochar forms are suited for use as soil amendments.

Estimation of User Activity States for Context-Aware Computing in Mobile Devices (모바일 디바이스에서 상황인식 컴퓨팅을 위한 사용자 활동 상태 추정)

  • Baek Jonghun;Yun Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.67-74
    • /
    • 2006
  • Contort-aware computing technology is one of the key technology of ubiquitous computing in the mobile device environment. Context recognition computing enables computer applications that automatically respond to user's everyday activity to be realized. In this paper, We use accelerometer could sense activity states of the object and apply to mobile devices. This method for estimating human motion states utilizes various statistics of accelerometer data, such as mean, standard variation, and skewness, as features for classification, and is expected to be more effective than other existing methods that rely on only a few simple statistics. Classification algorithm uses simple decision tree instead of existing neural network by considering mobile devices with limited resources. A series of experiments for testing the effectiveness of the our context detection system for mobile applications and ubiquitous computing has been performed, and its result is presented.

Minute Signal Noise Cancellation System For The Air-pollution Measurement System (NDIR 대기오염 측정시스템을 위한 미세신호 잡음제거기)

  • Kim, Young-Jin;Lim, Yong-Seok;Ryu, Geun-Taek;Bae, Hyeon-Deok;Choi, Hun
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.16-24
    • /
    • 2009
  • In this paper, we propose a new noise cancellation system for the NDIR based optical analyzer, that can measure various environmental air-pollution materials (CO, $SO_2$, NOx, etc.) in real-time. The sensed signals are contaminated by the different noise sources that measurement noise with high frequencies and the drift noise with the low frequencies. They can be eliminated by a pre-processing that considering their time-domian properties and by a post-processing that using sub-power ratios in subband structure. In the proposed method, the ore and pose-processing for noise cancelling are useful for hardware implementation of the NDIR based optical analyzer with a precision measuring.

Production of liquid fertilizer from broken eggs and evaluation of its effect on lettuce growth

  • Kim, Bo-Ra;Lee, Jae-Han;Kim, Su-Hun;Choi, Ha-Yeon;Choi, Bong-Su;Oh, Taek-Keun;Lee, Chang-Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Eggs are likely to be used in agriculture because they can provide enough nutrients for crop growth. Statistics show that a large number of eggs are lost due to breakage before reaching the final consumer. The purpose of this study was to make a natural liquid fertilizer as a substitute for chemical fertilizers using broken eggs as a resource and to evaluate the efficiency of the formulated fertilizer. To make the liquid fertilizer, the broken eggs and distilled water were mixed at ratios of 6 : 4 and 4 : 6. Then, effective micro-organisms (EM) and sugar were added, and the mixture was fermented. The temperature and electrical conductivity (EC) increased gradually with the fermentation while the pH decreased. When evaluated following the seed germination index method of the compost, it was found that the fertilizer matured 10 days after the beginning of the experiment. The growth experiment was conducted with lettuce in which the fermented liquid fertilizer was compared with a commercial liquid fertilizer. The 6 : 4 treatment produced plants with the densest fresh shoot and roots weighing 41.6 and 4.6 g, respectively. The number of leaves (12.3 per plant) was also the highest for the 6 : 4 treatment. Soil analysis showed that the soil pH was improved, and the soil organic matter was increased in the fermented liquid fertilizer treatment.

Design and Performance Evaluation of an Indexing Method for Partial String Searches (문자열 부분검색을 위한 색인기법의 설계 및 성능평가)

  • Gang, Seung-Heon;Yu, Jae-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1458-1467
    • /
    • 1999
  • Existing index structures such as extendable hashing and B+-tree do not support partial string searches perfectly. The inverted file method and the signature file method that are used in the web retrieval engine also have problems that they do not provide partial string searches and suffer from serious retrieval performance degradation respectively. In this paper, we propose an efficient index method that supports partial string searches and achieves good retrieval performance. The proposed index method is based on the Inverted file structure. It constructs the index file with patterns that result from dividing terms by two syllables to support partial string searches. We analyze the characteristics of our proposed method through simulation experiments using wide range of parameter values. We analyze the derive analytic performance evaluation models of the existing inverted file method, signature file method and the proposed index method in terms of retrieval time and storage overhead. We show through performance comparison based on analytic models that the proposed method significantly improves retrieval performance over the existing method.

  • PDF

An Empirical Study on the Quality Reliability of the Start-up performance of the Fixed Wing Aircraft at low temperature (고정익 항공기 저온 시동 성능의 품질 신뢰성 향상에 관한 실증적 연구)

  • Kim, DW;Jeong, SH
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.169-188
    • /
    • 2018
  • Purpose: The purpose of this study is to analyze low-temperature starting performance of the light attacker and to search and improve the aircraft system including battery and Battery Charge and Control Unit(BCCU). Methods: In order to improve the starting up performance of the light attacker at low-temp, various deficiency cause were derived and analyzed using Fault Tree Analysis method. As a result, it was confirmed there were drawbacks in the charging and discharging mechanism of the battery. The inactivation of the battery's electrolyte at low-temp and the premature termination of the battery charge were the main cause. After long error and trial, we improved these problems by improving performance of battery and optimizing the charging algorithm of BCCU. Results: It was confirmed that the problems of starting up failures were solved through the combined performance test of the battery and BCCU, the ground test using the aircraft system and the operation test conducted by Korea Airforce operating unit for 3 months in winter. Conclusion: This study showed that the improvement of quality reliability was achieved and thus the start-up performance issue of the light attacker has been resolved at low temperature. And it is expected that the design methodologies of temperature-affected electrical system of aircraft will contribute to the development of the aircraft industry in the future.

Prediction of Multi-Physical Analysis Using Machine Learning (기계학습을 이용한 다중물리해석 결과 예측)

  • Lee, Keun-Myoung;Kim, Kee-Young;Oh, Ung;Yoo, Sung-kyu;Song, Byeong-Suk
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.94-102
    • /
    • 2016
  • This paper proposes a new prediction method to reduce times and labor of repetitive multi-physics simulation. To achieve exact results from the whole simulation processes, complex modeling and huge amounts of time are required. Current multi-physics analysis focuses on the simulation method itself and the simulation environment to reduce times and labor. However this paper proposes an alternative way to reduce simulation times and labor by exploiting machine learning algorithm trained with data set from simulation results. Through comparing each machine learning algorithm, Gaussian Process Regression showed the best performance with under 100 training data and how similar results can be achieved through machine-learning without a complex simulation process. Given trained machine learning algorithm, it's possible to predict the result after changing some features of the simulation model just in a few second. This new method will be helpful to effectively reduce simulation times and labor because it can predict the results before more simulation.

An Energy-Efficient Data-Centric Routing Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 데이터 중심 라우팅 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2187-2192
    • /
    • 2016
  • A data-centric routing protocol considering a data aggregation technique at relay nodes is required to increase the lifetime of wireless sensor networks. An energy-efficient data-centric routing algorithm is proposed by considering a tradeoff between acquisition time and energy consumption in the wireless sensor network. First, the proposed routing scheme decides the sink node among all sensor nodes in order to minimize the maximum distance between them. Then, the proposed routing extends its tree structure in a way to minimize the link cost between the connected nodes for reducing energy consumption while minimizing the maximum distance between sensor nodes and a sink node for rapid information gathering. Simulation results show that the proposed data-centric routing algorithm has short information acquisition time and low energy consumption; thus, it achieves high energy efficiency in the wireless sensor network compared to conventional routing algorithms.

Growth, Fruit Quality, and Cracking of 'Campbell Early' Grapevine Grown under a Rain-shelter System in Sandy Loam Soils as Affected by Intervals and Amounts of Irrigation

  • Kim, Byeong-Sam;Yun, Bong-Ki;Jung, Seok-Kyu;Choi, Hyun-Sug
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • A study was conducted to evaluate the effects of irrigation (amount, interval) on tree growth, fruit quality, and cracking of organic 'Campbell Early' grapevine in 2012 and 2013. Three irrigation treatments were applied using a sprinkler system from mid-June to mid-August in 2012 and 2013, as follows: 10 mm was applied daily (10 mm-IR), 20 mm was applied every two days (20 mm-IR), and 30 mm was applied every five days (30 mm-IR). Soil electrical conductivity (EC) and temperature were found to be greatest in the 10 mm-IR treatment in both years. Soil moisture content ranged between 20-40% in the 10 mm-IR, between 20-60% in the 20 mm-IR, and between 20-70% in the 30 mm-IR treatment plots. The total number of leaves per shoot and shoot growth were found to be greatest in the 20 mm-IR and 30 mm-IR treatments, respectively. Cluster and berry weights, and cluster and berry sizes were not consistently affected by the treatments. The 10 mm-IR treatment resulted in an increase in fruit SSC, SSC/acidity ratio, and berry skin pigmentation ($b^*$; blue). Approximately 5% of fruit cracking was observed on average over both years in the 10 mm-IR-treated fruit, while the 30 mm-IR treatment resulted in nearly 18% of cracking in 2012. Average marketable fruit yield per year over two years was greatest for the 10 mm-IR treatment ($24.4t{\cdot}ha^{-1}$) followed by the 30 mm-IR treatment ($22.7t{\cdot}ha^{-1}$) and lastly the 20 mm-IR treatment ($22.2t{\cdot}ha^{-1}$). Thus, the 10 mm-IR treatment represents a suitable irrigation regimen for controlling leaf and shoot growth of vines grown under a rain-shelter system in sandy loam soils, while improving fruit sugar contents and skin color and limiting fruit cracking.

Sintering process optimization of ZnO varistor materials by machine learning based metamodel (기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구)

  • Kim, Boyeol;Seo, Ga Won;Ha, Manjin;Hong, Youn-Woo;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO varistor is a semiconductor device which can serve to protect the circuit from surge voltage because its non-linear I-V characteristics by controlling the microstructure of grain and grain boundaries. In order to obtain desired electrical properties, it is important to control microstructure evolution during the sintering process. In this research, we defined a dataset composed of process conditions of sintering and relative permittivity of sintered body, and collected experimental dataset with DOE. Meta-models can predict permittivity were developed by learning the collected experimental dataset on various machine learning algorithms. By utilizing the meta-model, we can derive optimized sintering conditions that could show the maximum permittivity from the numerical-based HMA (Hybrid Metaheuristic Algorithm) optimization algorithm. It is possible to search the optimal process conditions with minimum number of experiments if meta-model-based optimization is applied to ceramic processing.