• Title/Summary/Keyword: Electrical muscle stimulation

Search Result 354, Processing Time 0.021 seconds

바이오센서

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.109-111
    • /
    • 1989
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients.

  • PDF

The Contractile and Electrical Responses of Guinea-pig's Gastric Smooth Muscle to Serotonin

  • Lee, Sang-Jin;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.133-146
    • /
    • 1991
  • In order to elucidate systematically the effects of serotonin on gastric motility of guinea-pig, the contractile and electrical responses to serotonin were recorded using four kinds of muscle strips prepared from antral circular, antral longitudinal, fundic circular, and fundic longitudinal muscles. Experiments were performed using various methods including isometric contraction recording, transmural electrical field stimulation, junction potential recording, intracellular microelectrode technique, and partition stimulation method. The results were as follows: 1) The effect of serotonin on spontaneous contractions was inhibitory in the circular muscle strips of the antrum and fundus, while it was excitatory in the longitudinal muscle strips of the antrum and fundus. Serotonin changed mainly phasic contractions of both the circular and longitudinal muscle strips in the antrum, while it changed mainly tonic contractions of both the circular and longitudinal muscle strips in the fundus. 2) On the contractions induced by transmural nerve stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum, but it increased them in the other three groups of muscle strips(antral longitudinal, fundic circular, and fundic longitudinal). 3) On the contractions induced by direct muscle stimulation, serotonin decreased the amplitude in the circular muscle strips of the antrum and fundus. 4) In the fundic circular muscle strips serotonin potentiated excitatory junction potentials (EJPs), and in the antral circular muscle strips it evoked EJPs after inhibitory junction potentials(IJPS). 5) In the antral circular muscle strips serotonin did not affect the slow wave even at the disappearance of spontaneous contractions. On the contrary it increased the amplitude of the slow wave, when the spike component was potentiated and the second component was inhibited. 6) In the antral circular muscle strips the membrane potential was slightly hyperpolarized, but the membrane resistance was not changed. From the above results following conclusions could be made. 1) Serotonin inhibits spontaneous contractions of the circular muscle layer and it increases those of the longitudinal one, irrespective of the gastric region. 2) In the guinea-pig stomach there exists a serotoninergic facilitatory neuromodulation system which exerts its effect on cholinergically mediated contraction. 3) The excitation-contraction decoupling was observed in the effect of serotonin.

  • PDF

The Effects of Changing Duty Cycle With Electrical Stimulation on Blood Lactate and Plasma Enzyme (전기자극 시 활동주기 형태의 변화가 혈중젖산과 혈장효소에 미치는 영향)

  • Ko, Tae-Sung;Joung, Ho-Bal
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.90-97
    • /
    • 2005
  • By measuring changes in blood lactate and plasma enzyme (CPK, GOT, GPT) with electrical stimulation applied at two duty cycles, this study is intended to look into which type of duty cycle may have more effects on blood lactate and plasma enzyme constituents through animal experiment so as to determine any duty cycle appropriate for electrical treatment. In this study, electrical stimulation was applied to total 20 Korean house rabbits (weight: 3~3.5 kg) by means of an electrical therapeutic apparatus called TS6000 (made in Netherlands) at duty cycle of 50% and 20% respectively for 30 minutes. Here, 5 cc of blood was collected from their carotid artery before stimulation and in 30 minutes after stimulation respectively to carry out biochemical experiment and analysis. As determined through the above experiment, blood lactate rate was increased to 333.07% at 50% duty cycle after experiment and 185.71% at 20% duty cycle after experiment respectively. In both cases, blood lactate rate was significantly increased to higher level after electrical stimulation than before. Moreover, the rate of change in the average of blood lactate rate at both duty cycles also showed significant differences. CPK rate was boosted to 301.82% at 50% duty cycle after experiment and 321.35% at 20% duty cycle after experiment respectively. In both cases, CPK rate was remarkably boosted to higher level after stimulation than before (p<.05). However, there was not any significant difference in the rate of change in average CPK at both duty cycles (p<.05). GOT rate was significantly boosted up to 38.97% at 50% duty cycle after experiment (p<.05), while it was slightly increased to 1.68% at 20% duty cycle after experiment without any significant difference. Rather, GPT rate dropped slightly at both duty cycles after experiment, but there was not any significant difference. Although blood lactate and GOT were relatively less generated at 20% duty cycle after electrical stimulation than at 50% duty cycle, the change of duty cycle didn't have any significant influence on CPK rate. In this regard, this study failed to come any consistent conclusion about the association between change of duty cycle and muscle fatigue. Therefore, it is advisable that follow-up studies seek various ways to a little more effectively apply electrical stimulation to laboratory animals by avoiding their muscle fatigue. GOT rate was significantly boosted up to 38.97% at 50% duty cycle after experiment (p<.05), while it was slightly increased to 1.68% at 20% duty cycle after experiment without any significant difference. Rather, GPT rate dropped slightly at both duty cycles after experiment, but there was not any significant difference. Although blood lactate and GOT were relatively less generated at 20% duty cycle after electrical stimulation than at 50% duty cycle, the change of duty cycle didn't have any significant influence on CPK rate. In this regard, this study failed to come any consistent conclusion about the association between change of duty cycle and muscle fatigue. Therefore, it is advisable that follow-up studies seek various ways to a little more effectively apply electrical stimulation to laboratory animals by avoiding their muscle fatigue.

  • PDF

The Effect of Stretching and Pre-eccentric exercise on Delayed Onset Muscle Soreness (스트레칭과 사전원심성 운동이 지연성근육통에 미치는 영향)

  • Jeong, Jin-Gyu;Ryu, Seong-Sun;Kim, Yong-Nam;Kang, Jong-Ho;Kim, Su-Hyun;Hwang, Tae-Yeon
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Purpose : This study examines the effects of pre-eccentric exercise and stretch ing to bicepsbrachii to prevent delayed onset muscle soreness and recovery of muscular function depending on the training intensity with 28 normal adults in their twenties. Methods : The subjects were divided into a control group, a group without any previous eccentric exercise, and a stretching group. Pre-eccentric exercise group conducted exercise with the intensity of 25% of maximal voluntary contraction. Pre-eccentric exercise and stretching was applied before to induce delayed onset muscle soreness and after, 24 hour post, 48 hour post, and 72 hour post. Measurements were conducted to examine pain and muscular function changes before, immediately after, and after inducing delayed onset muscle soreness. After inducing delayed onset muscle soreness, measurements were taken at the 24th hour, 48th hour, and 72nd hour. Results : The pre-eccentric exercise group and stretching group showed a significant difference from the control group by isometric contract ion power and mechanical pain threshold as a result of measuring delayed onset muscle soreness. Conclusion : From these results, electrical stimulation using presynaptic inhibition mechanism of transcutaneous electrical stimulation (TES) had positive effects for walking ability on inhibition of muscle tone in lower extremity. The motor level stimulation group experienced a more significant effect than the sensory level stimulation group. Therefore, the transcutaneous electrical stimulation (TES) is considered to be effective on walking ability increasing through inhibition of muscle tone in lower extremity for rehabilitation of post stroke hemiplegic patients.

Fabrication of multi-well platform with electrical stimulation for efficient myogenic commitment of C2C12 cells

  • Song, Joohyun;Lee, Eunjee A.;Cha, Seungwoo;Kim, Insun;Choi, Yonghoon;Hwang, Nathaniel S.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.33-45
    • /
    • 2015
  • To engineer tissue-like structures, cells are required to organize themselves into three-dimensional networks that mimic the native tissue micro-architecture. Here, we present agarose-based multi-well platform incorporated with electrical stimulation to build skeletal muscle-like tissues in a facile and highly reproducible fashion. Electrical stimulation of C2C12 cells encapsulated in collagen/matrigel hydrogels facilitated the formation 3D muscle tissues. Consequently, we confirmed the transcriptional upregulations of myogenic related genes in the electrical stimulation group compared to non-stimulated control group in our multi-well 3D culture platform. Given the robust fabrication, engineered muscle tissues in multi-well platform may find their use in high-throughput biological studies drug screenings.

Development of EMG-Triggered Functional Electrical Stimulation Device for Upper Extremity Bilateral Movement Training in Stroke Patients: Feasibility and Pilot study

  • Song, Changho;Seo, Dong-kwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.374-378
    • /
    • 2021
  • Objective: Bilateral movement training is an effective method for upper extremity rehabilitation of stroke. An approach to induce bilateral movement through functional electrical stimulation is attempted. The purpose of this study is to develop an EMG-triggered functional electrical stimulation device for upper extremity bilateral movement training in stroke patients and test its feasibility. Design: Feasibility and Pilot study design. Methods: We assessed muscle activation and kinematic data of the affected and unaffected upper extremities of a stroke patient during wrist flexion and extension with and without the device. Wireless EMG was used to evaluate muscle activity, and 12 3D infrared cameras were used to evaluate kinematic data. Results: We developed an EMG-triggered functional electrical stimulation device to enable bilateral arm training in stroke patients. A system for controlling functional electrical stimulation with signals received through a 2-channel EMG sensor was developed. The device consists of an EMG sensing unit, a functional electrical stimulation unit, and a control unit. There was asymmetry of movement between the two sides during wrist flexion and extension. With the device, the asymmetry was lowest at 60% of the threshold of the unaffected side. Conclusions: In this study, we developed an EMG-triggered FES device, and the pilot study result showed that the device reduces asymmetry.

The Effects of FES on Balance and Gait Ability in Patients of Stroke Patients (기능적 전기 자극이 뇌졸중 환자의 균형과 보행에 미치는 영향)

  • Hong, Jongyun;Lee, Hyojeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.95-109
    • /
    • 2019
  • Purpose : This study was conducted to evaluate the effects of FES with abdominal muscle contraction before virtual reality training on balance and gait ability in patients of stroke patients. Methods : The subjects were 30 stroke patients who satisfied the selection criteria. They were randomly assigned to a group receiving functional electrical stimulation with a virtual reality training program (the experiment group, n=15) and placebo functional electrical stimulation with a virtual reality training program (the control group, n=15). The program consisted of three 30-min sessions per week for six weeks. The timed up and go test (TUG), the BT4, the G-WALK were used to estimate subjects' balance, gait before and after the program. For the experiment group, the functional electrical stimulation was applied to the external oblique and the rectus abdominis, For the control group, the same program and the placebo functional electrical stimulation were applied. Results : There were significant improvements in the subscales of the balance and gait ability test of those who participated in the functional electrical stimulation, while the control group showed no significant changes. Conclusion : Therefore, functional electrical stimulation with virtual reality effectively improved the balance and gait ability in patients with chronic stroke.

Effect of Electrical Muscle Stimulation Belt for Abdominal Muscles Activation

  • Choi, Dayeong;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.444-449
    • /
    • 2021
  • Objective: The purpose of this study is to observe the change in the thickness of abdominal muscles when electrical muscle stimulation (EMS) is applied to the abdomen during rest and abdominal muscle exercise to investigate the effect of EMS applied to the abdomen on the superficial and deep muscles thickness. Design: Cross sectional design. Methods: Twenty healthy subjects participated in this study. Subjects were performed resting position, resting position with EMS, curl-up and curl-up with EMS. The electrode of the EMS belt is attached to the abdominal wall between the 12th rib and iliac crest. The thickness of abdominal muscles including rectus abdominis (RA), external oblique (EO), internal oblique (IO), and transverse abdominis (TrA) were captured in each position by ultrasound image during expiration. All subjects were performed four positions randomly. Data were analyzed using repeated ANOVA with the level of significance set at 𝛼=0.05. Results: The muscle thickness of RA, EO, IO and TrA were significantly different at each position (p<0.05). The thickness of all abdominal muscles increased significantly when curl-up than curl-up with EMS. Both RA and EO thickness were significantly increased at resting position than resting position and EMS were combined(p<0.05). But IO and TrA thickness were decreased at resting position when EMS were combined. Conclusions: The results suggest that EMS activates superficial abdominal muscles RA and EO. Therefore, abdominal strengthening exercise combined EMS can activate abdominal muscles and can be applied to various patients and rehabilitation in clinical practice.

Effect of Neuromuscular Electrical Stimulation Combined with Traditional Dysphagia Rehabilitation on Masseter Muscle Thickness and Bite Force in Stroke with Dysphagia Patient

  • Lee, Myunglyeol;Lee, Kuija;Kim, Jinuk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2365-2369
    • /
    • 2021
  • Background: Patients with dysphagia after stroke are treated with neuromuscular electrical stimulation (NMES), but its effect on masseter muscle thickness and bite force in the oral phase is not well known. Objectives: To investigated the effect of NMES on masseter muscle thickness and occlusal force in patients with dysphagia after stroke. Design: Two group, pre-post design. Methods: In this study, 25 patients with dysphagia after stroke were recruited and allocated to either the experimental or the control groups. Patients in the experimental group were treated with NMES to the masseter muscle at the motor level for 30 minutes and were additionally treated with traditional swallowing rehabilitation for 30 minutes. In contrast, patients in the control group were only treated with traditional swallowing rehabilitation for 30 minutes. Masseter muscle thickness was measured using ultrasonography before and after intervention, and bite force was measured using an bite force meter. Results: The experimental group showed significant improvement in masseter muscle thickness and bite force compared to the control group. Conclusion: NMES combined with traditional dysphagia rehabilitation is effective in improving masseter muscle thickness and bite force in patients with dysphagia after stroke.

Analysis of Surface EMG Power Spectrum and Muscle Fatigue Depending on the Variable of Neuromuscular Electrical Stimulation (표면근전도를 이용한 신경근 전기자극 치료변수에 따른 근피로도 분석)

  • Kim, Gi-Won;Kim, Junesun
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.5
    • /
    • pp.280-289
    • /
    • 2014
  • Purpose: This study was conducted in order to determine the stimulation variables which should be considered when neuromuscular electrical stimulation (NMES) is applied for a muscle under the normal innervation to minimize muscle fatigue and increase force-generating ability. Methods: A total of 23 healthy men participated in the study and all subjects were randomly assigned to the 1:1 group, 1:3 group, 1:5 group, and control group with on-off ratio of NMES. The subjects performed a fatigue task, consisting of 10 times of isometric contraction sustained by NMES. NMES using Russian current stimulation was applied to muscle fatigue and divided into three sessions by pulse frequency (10 bps, 30 bps, 90 bps). The EMG was recorded using an MP 100 system from the quadriceps femoris muscle in four groups. Results: The differences of delta MdF and delta MF of between on-off ratio groups of 10 bps, 30 bps, and 90 bps pulse frequencies were very significant (p<0.05). According to the results of post hoc of 10, 90 bps, it was greater in the 1:1 group and the 1:3 group compared with the 1:5 group, and no fatigue was observed in the control group. In 30 bps, it was greater in the 1:1 group compared with 1:3, 1:5, and control group (p<.05). Conclusion: Among NMES variables to minimize muscle fatigue, the larger on-off ratio by pulse frequency showed the lower muscle fatigue. Therefore, on-off ratio needs to be great enough, and will be more efficient with the frequency 30 bps rather than of 10 bps and 90 bps.