• 제목/요약/키워드: Electrical muscle stimulation

검색결과 354건 처리시간 0.161초

The Effect of an Abdominal Drawing-In Maneuver Combined with Low·High Frequency Neuromuscular Electrical Stimulation on Trunk Muscle Activity, Muscle Fatigue, and Balance in Stroke Patients

  • Kang, Jeong-Il;Jeong, Dae-Keun;Baek, Seung-Yun;Heo, Sin-Haeng
    • The Journal of Korean Physical Therapy
    • /
    • 제34권5호
    • /
    • pp.205-211
    • /
    • 2022
  • Purpose: This study investigated the effects of an intervention that combined the abdominal drawing-in maneuver and frequency-specific neuromuscular electrical stimulation on changes in trunk muscle activity, muscle fatigue, and balance in stroke patients. Methods: Thirty stroke patients were randomly assigned to two groups. Fifteen subjects were assigned to group I which performed the abdominal drawing-in maneuver combined with low-frequency neuromuscular electrical stimulation and the other 15 subjects to group II where the abdominal drawing-in maneuver was combined with high-frequency neuromuscular electrical stimulation. Muscle activity and fatigue were measured using surface electromyography before the intervention. Balance was measured using the Trunk Impairment Scale and re-measured after six weeks of intervention for comparative analysis. Results: Both groups showed a significant increase in muscle activity and balance (p<0.05), and there was no significant difference between the groups (p>0.05). In the changes in muscle fatigue, only the experimental group II showed a significant increase in muscle fatigue (p<0.05). The difference between the groups was statistically significant (p<0.05). Conclusion: It was confirmed that among stroke patients, the combination of the abdominal drawing-in maneuver and low-frequency neuromuscular electrical stimulation was more effective in changing the muscle activity and balance of the trunk by minimizing the occurrence of muscle fatigue compared to the combination of the abdominal drawing-in maneuver and high-frequency stimulation. These results can be used as basic data for clinical trunk stabilization training.

전기자극 조건에 따른 근육 세포에 미치는 영향과 반응 (Effect and Response of Skeletal Muscle Cells on Electrical Stimulation Condition)

  • 서형우;신현영;이현주;태기식;김민석
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.308-312
    • /
    • 2017
  • Skeletal muscle function plays a very important role in quality of life. However, skeletal muscle causes functional decline under aging or some diseases. Exercise and muscle training are good solutions to delay sarcopenia, but there are limitations to those who are uncomfortable in exercise. For this reason, alternative interventions for muscle sarcopenia are required, and many studies proved the increase of skeletal muscle mass by electrical stimulation. In conventional studies, however, mouse skeletal muscle cells have been mostly used in experiments to identify electrical stimulation conditions while human derived cells have not been frequently utilized in these studies. Stimulation used for rehabilitation has been uniformly treated without the consideration of aging. In addition, many studies have been used with conventional petri dish usually requiring many numbers of cells, which is not appropriate for rare. Moreover, they are not usually condition uniformity of electrical field. In this study, we have developed an electrical stimulation device which consumes a small amount of cells and can form a uniform electrical field. With the system, we analyzed the skeletal muscle differentiation and Myotube thickness depending on the electrical stimulation condition.

The effects of EMG-triggered functional electrical stimulation on upper extremity function in stroke patients

  • Kim, Young
    • Physical Therapy Rehabilitation Science
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Objective: The aim of this review is to explore the latest intervention trends and effects of EMG-triggered functional electrical stimulation on the upper extremity functions in stroke patients. Design: Systematic review on clinical trials. Methods: A systematic literature search was performed to identify clinical trials evaluating the effects of EMG-triggered functional electrical stimulation (EMG-FES) and task-oriented EMG-triggered FES on the hand functions in stroke patients. Literature review was conducted with the following key words: hand function, functional electrical stimulation, task-oriented, stroke. Results: Ten clinical trials were included; 8 of them were randomized controlled trial, 1 was block-randomized, and 1 was a pre-post comparison study. A positive effect of electrical stimulation was reported in the patient groups that were treated with functional electrical stimulation combined with specific tasks, and volitional muscle contraction-triggered stimulation that was synchronized with tasks. Motor capabilities of the hand and arm were improved after the rehabilitation. Conclusions: EMG-triggered electrical stimulation may be more effective than non-triggered electrical stimulation in facilitating the hand functions in stroke patients in terms of muscle strength and voluntary muscle contraction of the paretic hand and arm. Triggered electrical stimulation can be even more effective when it is combined with specific tasks.

  • PDF

Pelvic Floor Muscle Exercise by Biofeedback and Electrical Stimulation to Reinforce the Pelvic Floor Muscle after Normal Delivery

  • Lee, In-Sook;Choi, Euy-Soon
    • 대한간호학회지
    • /
    • 제36권8호
    • /
    • pp.1374-1380
    • /
    • 2006
  • Purpose. This study was conducted to investigate the effectiveness of pelvic floor muscle exercise using biofeedback and electrical stimulation after normal delivery. Methods. The subjects of this study were 49 (experimental group: 25, control group: 24) postpartum women who passed 6 weeks after normal delivery without complication of pregnancy, delivery and postpartum. The experimental group was applied to the pelvic muscle enforcement program by biofeedback and electrical stimulation for 30 minutes per session, twice a week for 6 weeks, after then self-exercise of pelvic floor muscle was done 50-60 repetition per session, 3 times a day for 6 weeks. Maximum pressure of pelvic floor muscle contraction (MPPFMC), average pressure of pelvic floor muscle contraction (APPFMC), duration time of pelvic floor muscle contraction (DTPFMC) and the subjective lower urinary symptoms were measured by digital perineometer and Bristol Female Urinary Symptom Questionnaire and compared between two groups prior to trial, at the end of treatment and 6 weeks after treatment. Results. The results of this study indicated that MPPFMC, APPFMC, DTPFMC were significantly increased and subjective lower urinary symptoms were significantly decreased after treatment in the experimental group than in the control group. Conclusions. This study suggested that the pelvic floor muscle exercise using biofeedback and electrical stimulation might be a safer and more effective program for reinforcing pelvic floor muscle after normal delivery.

깊은호흡 시 미주신경 전기자극이 호흡근 활성과 호흡능력에 미치는 효과(사례 연구) (Effect of Vagus Nerve Electrical Stimulation on Respiratory Muscle Activity and Lung Capacity during Deep Breathing (Case Study))

  • 문현주
    • 대한통합의학회지
    • /
    • 제7권2호
    • /
    • pp.181-187
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the activity of respiratory muscle and lung capacity during deep breathing with electrical stimulation of the vagus nerve. Methods: This study was conducted on 30 healthy adults in their 20s. Subjects were randomly performed to deep breathing or deep breathing with vagus nerve electrical stimulation. All subjects' diaphragm and internal oblique muscle activity were measured during deep breathing by electromyography, and lung capacity was measured by spirometry immediately after beep breathing. In the vagus nerve stimulation method, the surface electrode was cut into the left ear and then electrically stimulated using a needle electric stimulator. Results: The activity of diaphragm was significantly increased in deep breathing with vagus nerve electrical stimulation than in deep breathing. However, lung capacity did not show any significant difference according to the condition. Conclusion: Vagus nerve electrical stimulation could induce diaphragm activity more than deep breathing alone. Deep breathing with vagus nerve electrical stimulation may enhance the activity of the respiratory muscles and is expected to be an effective treatment for the elderly or COPD patients with poor breathing ability.

Effects of Rehabilitation Exercise Combined with Electrical Muscle Stimulation on Pain, Muscle Strength, and Function in Soldiers Undergoing Knee Meniscectomy

  • Yong-Jun Yu;Won-Seob Shin
    • Physical Therapy Rehabilitation Science
    • /
    • 제12권2호
    • /
    • pp.140-148
    • /
    • 2023
  • Objective: Meniscal injuries are a common and high-risk condition among military personnel, leading to difficulties in performing missions.The objective of this study is to investigate the effects of combining electrical muscle stimulation therapy with exercise therapy during rehabilitation on pain, muscle strength, and function in patients after meniscectomy. Design: A two-group pretest-posttest design Methods: A total of 30 subjects were included in this study. They were randomly assigned to either the experimental group (n=15), which received knee extensor strengthening exercise along with electrical muscle stimulation, or the control group (n=15), which received only knee extensor strengthening exercise. Pre-test was conducted prior to the intervention, which consisted of 30 minutes of treatment five times a week for a total of 20 sessions. Post-test was performed after a 4-week period. Pain, strength, and function were assessed before and after the intervention. Results: The results of the study showed that there was a significant difference in pain reduction and muscle strength improvement in the experimental group, and a significant difference was also found between the experimental group and the control group in terms of functional evaluation. Conclusions: The combination of exercise therapy and electrical muscle stimulation therapy resulted in greater improvements in pain, strength, and function assessment, contributing to improved overall function.

신경근전기자극이 흰쥐 골격근의 미세구조에 미치는 영향 (Effect of Neuromuscular Electrical Stimulation(NMES) on the Ultrastructure of Skeletal Muscle in Rats)

  • 박장성;박천만
    • 대한임상전기생리학회지
    • /
    • 제1권1호
    • /
    • pp.57-72
    • /
    • 2003
  • This study conducts electrical stimulation to male white rat of Spargue-Dawley which is 7 weeks, has the weight of 240 g and is seemingly healthy for one or two weeks by means of neuromuscular electrical stimulator in order to examine the effects of neuromuscular electrical stimulation on its gastrocnemius, measures change of weight of gastrocnemius, serum and enzyme activity and then obtains the following conclusions. There is little difference in AST and CPK of weight and serum of gastrocnemius after one or two weeks of conducting neuromuscular electrical stimulation in all experimental groups. On the one hand, as a result of histochemical observation, NMES I group showed hypertrophy of perimysium and increase of sectional diameter of muscle fiber compared to comparison group, but NMES II group showed a similar result to comparison group. When ultrasubstructure was observed under electron microscope, I-type muscle fiber of NMES I group showed well-arranged mitochondria and it was similar to comparison group. II-type muscle fiber showed a large quantity of glycogen granules within sarcoplasmatic and the extension of luminal of T-tubule. I-type muscle fiber of NMES II group had small mitochondria and showed the vacuolar degeneration of mitochondria and extended T-tubule. II-type muscle fiber showed the extension of agranule cytoplasma reticulum with T-tubule and the reduction of amount of glycogen granule within partial sarcoplasmatic.

  • PDF

전기자극에 의한 근 수축이 V wave와 중앙주파수에 미치는 영향 (The Effects of Muscle Contraction by Electrical Stimulation to V Wave and Median Frequency)

  • 문달주;정대인;이정우;정진규;김태열;오명화
    • 대한임상전기생리학회지
    • /
    • 제4권1호
    • /
    • pp.27-38
    • /
    • 2006
  • This study analyzed changes in action potential of supraspinal neuron and motor unit depending on maximum tolerance isometric contraction(MTIC) by electrical stimulation and examined influence of functional electrical stimulation (FES) on spinal neuron adaptation. It selected 40 university students in their twenties and divided into experimental groups of 25% MTIC(I), 50% MTIC I (II), 75% MTIC(III) and 100% MTIC(IV) depending on MTIC by electrical stimulation, and performed isometric contraction of plantar flexor muscle to each experimental group with given contraction for 20 times. It measured V/Mmax and MDF pre and post exercise, compared volume of contraction. 1. V/Mmax ratio showed no significant difference in comparison among experimental groups. 2. There was significant difference in median frequency of gastrocnemius and soleus in action potential motor unit according to comparison among experimental groups(p<.001). When contraction by electrical stimulation was maximum, change was greatest. This results suggest that muscle contraction by electrical stimulation was influence to action potential of spinal motor neuron system which appear optimal level though aspect and difference degree were not in accordance. Consequently, optimal stimulation level of MTIC(50%) by FES would be lead to central nerve adaptation. muscle contraction by electrical stimulation was influence highly to MDF which should be consider to fatigue of motor unit for muscle contraction by electrical stimulation.

  • PDF

전기자극이 흰쥐 탈신경 근육의 위축에 미치는 영향 (Effect of Electrical Stimulation on the Denervated Muscle of the Albino Rat. Sprague-Dawley)

  • 이재형;이경로
    • The Journal of Korean Physical Therapy
    • /
    • 제2권1호
    • /
    • pp.47-63
    • /
    • 1990
  • The purpose of this study was to determined the effect of low-frequency electrical stimulation on the denervated gastrocnemius muscles of the albino rats, Sprague-Dawley. Fifteen Sprague-Dawley adult male albino rats were divided into non-treated (normal) group, denervated (control) group, denervated and electrical stimulated (experiments). The gastrocnemius muscles of the right leg were submaximally stimulated with 30 Hz electrical stimulation. After 4-week period, the animals were sacrificed, and muscle were removed, fixed by immersion, and processed for light and electron microscopy. The numbers of Ag-NOR increased significantly (p<0.001), but significant reductions of girth(p<0.01), wet muscle weight (p<0.001), high glycogen content fiber (p<0.01), and mitochondrial number (p<0.05) were found in denervated control group. In comparison with control group, significant increase of right leg girth (p<0.05), wet muscle weight (p<0.001), high glycogen content fiber (p<0.05), numbers of Ag-NOR(p<0.001), number of mitochondria (p<0.01), mitochondrial volume found in electrical stimulated experimental group. The results suggest that the electrical stimulation of the muscle partially prevented the denervated atrophy in the rat gastrocnemius muscles.

  • PDF

기능적 전기자극에 의한 근육피로의 특성을 표현하는 근육 모델 (Musculotendon Model to Represent Characteristics of Muscle Fatigue due to Functional Electrical Stimulation)

  • 임종광;남문현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.1046-1053
    • /
    • 1999
  • The musculotendon model is presented to show the declines in muscle force and shortening velocity during muscle fatigue due to the repeated functional electrical stimulation (FES). It consists of the nonlinear activation and contraction dynamics including physiological concepts of muscle fatigue. The activation dynamics represents $Ca^{2+}$ binding and unbinding mechanism with troponins of cross-bridges in sarcoplasm. It has the constant binding rate or activation time constant and two step nonlinear unbinding rate or inactivation time constant. The contraction dynamics is the modified Hill type model to represent muscle force - length and muscle force - velocity relations. A muscle fatigue profile as a function of the intracellular acidification, pH is applied into the contraction dynamics to represent the force decline. The computer simulation shows that muscle force and shortening velocity decline in stimulation time. And we validate the model. The model can predicts the proper muscle force without changing its parameters even when existing the estimation errors of the optimal fiber length. The change in the estimate of the optimal fiber length has an effect only on muscle time constant in transient period not on the tetanic force in the steady-state and relaxation periods.

  • PDF