• 제목/요약/키워드: Electrical input impedance

검색결과 232건 처리시간 0.022초

Optimal Design of a Damped Input Filter Based on a Genetic Algorithm for an Electrolytic Capacitor-less Converter

  • Dehkordi, Behzad Mirzaeian;Yoo, Anno;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.418-429
    • /
    • 2009
  • In this paper an optimal damped input filter is designed based on a Genetic Algorithm (GA) for an electrolytic capacitor-less AC-AC converter. Sufficient passive damping and minimum losses in passive damping elements, minimization of the filter output impedance at the filter cut-off frequency, minimization of the DC-link voltage and input current fluctuations, and minimization of the filter costs are the main objectives in the multi-objective optimization of the input filter. The proposed filter has been validated experimentally using an induction motor drive system employing an electrolytic capacitor-less AC-AC converter.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

Modeling and Analysis of the Fractional Order Buck Converter in DCM Operation by using Fractional Calculus and the Circuit-Averaging Technique

  • Wang, Faqiang;Ma, Xikui
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1008-1015
    • /
    • 2013
  • By using fractional calculus and the circuit-averaging technique, the modeling and analysis of a Buck converter with fractional order inductor and fractional order capacitor in discontinuous conduction mode (DCM) operations is investigated in this study. The equivalent averaged circuit model of the fractional order Buck converter in DCM operations is established. DC analysis is conducted by using the derived DC equivalent circuit model. The transfer functions from the input voltage to the output voltage, the duty cycle to the output voltage, the input impedance, and the output impedance of the fractional order Buck converter in DCM operations are derived from the corresponding AC-equivalent circuit model. Results show that the DC equilibrium point, voltage ratio, and all derived transfer functions of the fractional order Buck converter in DCM operations are affected by the inductor order and/or capacitor order. The fractional order inductor and fractional order capacitor are designed, and PSIM simulations are performed to confirm the correctness of the derivations and theoretical analysis.

주입전류 패턴에 따른 EIT 방광 모니터링 시스템의 성능분석 (Performance analysis of EIT bladder monitoring system according to input current patterns)

  • 한유정;;김경연
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.164-172
    • /
    • 2019
  • 현재 배뇨 장애를 진단할 수 있는 대표적인 임상 방법들은 침습적이고 고가이며, 장시간 연속적인 모니터링을 수행하기에는 한계가 있다. EIT는 비침습적 방법으로 외부 전극을 통하여 전류를 주입하고 유기된 전압을 측정하여 내부 전기적(임피던스) 특성을 영상화 하는 기술로써, 저렴한 비용으로 방광의 상태를 모니터링 할 수 있는 유용한 기법이 될 수 있다. 전극을 통하여 주입된 전류 패턴에 따라 측정전압 데이터의 신호특성이 달라지고 영상 복원 성능에 영향을 미친다. 본 논문에서는 인체 하복부 부근에 위치한 방광의 크기 변화에 대한 민감도가 극대화될 수 있는 모델링을 위해 입력전류 패턴에 따른 영상 복원 성능을 분석하였다.

A Reconfigurable Directional Coupler Using a Variable Impedance Mismatch Reflector for High Isolation

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • 제16권4호
    • /
    • pp.206-209
    • /
    • 2016
  • This letter proposes a reconfigurable directional coupler that uses a variable impedance mismatch reflector to achieve high isolation characteristics in the antenna front end. The reconfigurable coupler consists of a directional coupler and a single-pole four-throw (SP4T) switch with different load impedances as a variable load mismatch reflector. Selection of the load impedance by the reflector allows cancellation of the reflected signal due to antenna load mismatch and the leakage from the input to isolation port of the directional coupler, resulting in high isolation characteristics. The performance of the proposed architecture in separating the received (Rx) signal from the transmitted (Tx) signal in the antenna front end was verified by implementing and testing the reconfigurable coupler at 917 MHz for UHF radio-frequency identification (RFID) applications. The proposed reconfigurable directional coupler showed an improvement in the isolation characteristics of more than 20 dB at the operation frequency band.

새로운 전기 자동차 온보드 충전기용 3-포트 컨버터 (A Novel Three-Port Converter for the On-Board Charger of Electric Vehicles)

  • 사기르 아민;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 추계학술대회
    • /
    • pp.111-112
    • /
    • 2017
  • This paper presents a novel three-port converter for the OnBoard Charger of Electric Vehicles by using an impedance control network. The proposed concept is suitable for charging a main battery and an auxiliary battery of an electric vehicle at the same time due to its power handling capability of the converter without additional switches. The power flow is managed by the phase angle (${\Theta}$) between the ports whereas voltage at each port is controlled by the asymmetric duty cycle and the phase shift (${\Phi}$) between the inverter lags controlled by the impedance control network. The proposed system has a capability of achieving zero voltage switching (ZVS) and zero current switching (ZCS) at all the switches over the wide range of input voltage, output voltage and output power. The feasibility of the proposed system is verified by the PSIM simulation.

  • PDF

A Novel Impedance Matching Topology for Magnetically Coupled Wireless Power Transfer

  • Lee, Gunbok;Park, Wee Sang
    • International journal of advanced smart convergence
    • /
    • 제1권2호
    • /
    • pp.16-19
    • /
    • 2012
  • A modified 4-coil magnetic resonance wireless power transfer (MRWPT) system is proposed. Four coils based on 2-coil system with additional two matching coils were used in this topology. When Tx-Rx distance is changed, the input impedance is changed. However, it can be adjusted by coil parameters of matching coils to maintain impedance matching for maximum efficiency. The equivalent circuit of MRWPT system was analyzed for both transmission function and optimum coupling coefficient of the matching coils. By using four spiral resonant coils, these design considerations was experimentally verified. The measured data agreed well with the calculated data and the transmission function of the proposed system was more efficient than that of conventional 2-coil system.

A Novel CPW Balanced Distributed Amplifier Using Broadband Impedance-Transforming MEMS Baluns

  • Lee, Sanghyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.610-612
    • /
    • 2013
  • A novel balanced distributed amplifier (DA) was proposed using novel impedance transforming MEMS baluns. The impedance transforming MEMS balun is matched to $50{\Omega}$ at one input port and $25{\Omega}$ at two output ports. It is based on the electric field mode-change method, thus it is strongly independent of frequency and very compact. The novel balanced DA consists of two $25{\Omega}$-matched DAs and these are combined by $50{\Omega}$-to-$25{\Omega}$ baluns. Theoretically, it has two times wider bandwidth and power capability than the conventional DA. So as to verify the proposed concept, we designed and fabricated a conventional DA and the proposed one using 0.15-${\mu}m$ GaAs pHEMT technology.

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

신경회로망을 이용한 배전선로 고저항 사고 검출 기법의 개발 (Development of a high Impedance Fault Detection Method in Distribution Lines using Neural network)

  • 황의천;김남호
    • 조명전기설비학회논문지
    • /
    • 제13권2호
    • /
    • pp.80-87
    • /
    • 1999
  • 본 논문은 신경회로망을 이용하여 배전선로상의 고저항 사고검출기법을 제안하였다. 다양한 토양에서 실시한 고저항 사고 데이터를 통해 $\upsilon-i$ 특성곡선을 얻고, 이 특성곡선으로 EMTP를 이용하여 고저항 사고를 모의하였다. 배전선로 고저항 사고검출을 위해 훈련 모델은 강자갈을 사용하였고, 토양의 조건을 달리하여 신경회로망의 사고검출 성능을 평가하였다. 신경회로망의 입력으로 사고 전류를 주파수 분석한 후, 이를 한 주기 평균하여 얻어진 짝.홀수 고조파, 기본파, 실효치 지수을 이용하였다. 신겨회로망의 검출성능을 테스트한 결과 제안된 방법이 뛰어남을 확인하였다.

  • PDF