• 제목/요약/키워드: Electrical fault

Search Result 3,418, Processing Time 0.029 seconds

A Fault Analysis on AC Microgrid with Distributed Generations

  • Shin, Seong-Su;Oh, Joon-Seok;Jang, Su-Hyeong;Chae, Woo-Kyu;Park, Jong-Ho;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1600-1609
    • /
    • 2016
  • As the penetration of different types of renewable energy sources (RES) and energy storage systems (ESS) increases, the importance of stability in AC microgrid is being emphasized. Especially, RES and ESS which are operated using power electronics have difference in output characteristics according to control structures. When faults like single-line-to-ground fault or islanding operation occur, this means that a fault should be interpreted in different way. Therefore, it is necessary to analyze fault characteristics in AC microgrid in case of grid-connected mode and standalone mode. In this paper, the fault analysis for AC microgrid is carried out using PSCAD/EMTDC and an overvoltage problem and the countermeasures were proposed.

An Artificial Neural Networks Application for the Automatic Detection of Severity of Stator Inter Coil Fault in Three Phase Induction Motor

  • Rajamany, Gayatridevi;Srinivasan, Sekar
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2219-2226
    • /
    • 2017
  • This paper deals with artificial neural network approach for automatic detection of severity level of stator winding fault in induction motor. The problem is faced through modelling and simulation of induction motor with inter coil shorting in stator winding. The sum of the absolute values of difference in the peak values of phase currents from each half cycle has been chosen as the main input to the classifier. Sample values from workspace of Simulink model, which are verified with experiment setup practically, have been imported to neural network architecture. Consideration of a single input extracted from time domain simplifies and advances the fault detection technique. The output of the feed forward back propagation neural network classifies the short circuit fault level of the stator winding.

A Development of the Fault Detection System of Wire Rope using Magnetic Flux Leakage Inspection Method and Noise Filter (누설자속 탐상법 및 노이즈 필터를 이용한 와이어로프의 결함진단시스템 개발)

  • Lee, Young Jin;A, Mi Na;Lee, Kwon Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.418-424
    • /
    • 2014
  • A large number of wire rope has been used in various industries such as cranes and elevators. When wire used for a long time, wire defects occur such as disconnection and wear. It leads to an accident and damage to life and property. To prevent this accident, we proposed a wire rope fault detection system in this paper. We constructed the whole system choosing the leakage fault detection method using hall sensors and the method is simple and easy maintenance characteristics. Fault diagnosis and analysis were available through analog filter and amplification process. The amplified signal is transmitted to the computer through the data acquisition system. This signal could be obtained improved results through the digital filter process.

Decision Making on Bus Splitting Locations Using a Modified Fault Current Constrained Optimal Power Flow (FCC-OPF)

  • Song, Hwachang;Vovos, Panagis N.;Cho, Kang-Wook;Kim, Tae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • This paper presents a method of decision on where bus splitting is needed to reduce fault current level of power systems and to satisfy the fault current constraints. The method employs a modified fault current constrained optimal power flow (FCC-OPF) with X variables for the candidate locations of splitting and for decision making on whether to split or not, it adopts soft-discretization by augmenting inversed U-shaped penalty terms. Also, this paper discusses the procedure on the adequate selection of bus splitting locations based on the results of the modified FCC-OPF, to reduce the total number of the actions taken.

Modeling and Analysis of PMSMs under Inter Turn Short Faults

  • Choi, Jun-Hyuk;Gu, Bon-Gwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1243-1250
    • /
    • 2013
  • A model of a permanent magnet synchronous motor (PMSM) with an inter turn short fault is proposed using a deformed flux model. The deformed flux model includes not only the fault winding flux information but also the inductance variation of the healthy winding considering the configuration of the winding distribution. With the deformed flux model and the positive sequence current assumption, the proposed model is derived in the positive and negative sequence synchronous reference frame (SRF). The finite elements method (FEM) simulation is applied to validate the proposed PMSM model with inter turn short fault.

Extended Fault Location Algorithm Using the Estimated Remote Source Impedance for Parallel Transmission Lines

  • Ryu, Jeong-Hun;Kang, Sang-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2212-2219
    • /
    • 2018
  • This paper describes extended fault location algorithm using estimated remote source impedance. The method uses data only at the local end and the sequence current distribution factors for more accurate estimation. The proposed algorithm can respond to variation of the local and remote source impedance. Therefore, this method is especially useful for transmission lines interconnected to a wind farm that the source impedance varies continuously. The proposed algorithm is very insensitive to the variation in fault distance and fault resistance. The simulation results have shown the accuracy and effectiveness of the proposed algorithm.

Fault Detection and Isolation Scheme for Inverted Pendulum Control System (역진자 제어계의 고장검출식별 기법)

  • Lee, Sang-Moon;Ryu, Ji-Su;Lee, Kee-Sang;Park, Tae-Geon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2227-2229
    • /
    • 2004
  • Fault Detection and Isolation(FDI) schemes using unknown input functional observers with very low order are presented. These schemes resolve the major practical difficulties with all FDI systems employing multiple observers for residual generation and can be implemented by the use of microprocessors that are normally used in commercial processes mainly due to the simplicity of the residual generation block. Various design objectives including detection, isolation, estimation and compensation of instrument fault/or process fault are achievable with these schemes. The proposed FDI scheme is applied to an inverted pendulum control system for instrument fault detection.

  • PDF

A Study on Fault-Tolerance Design Methods for Nuclear Digital Control Systems (원전 디지털 제어계통을 위한 고장허용설계방법론에 관한 연구)

  • Go, Won-Seok;Choe, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In this paper, a design method of fault-tolerance is presented for the nuclear digital control systems composed of software and hardware. As a quantitative design method measure of fault-tolerance, we used Reliability, Availability and Safety. To implement the proposed fault-tolerance, a prototype system has been devised for the digital control systems and a quantitative method of 'Markovian Model' is applied. The results provide the appropriate degree of redundancy and diversity, and fail-safe.

  • PDF

Fault Diagnosis of motor driven pump system based on fuzzy inference (퍼지추론을 이용한 전동기구동 펌프시스템의 고장진단)

  • Cho, Yun-Seok;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.689-691
    • /
    • 1995
  • In this paper, a fault detection and isolation unit(FDIU) for a centrifugal pump system driven by DC-motor is proposed. The proposed scheme can be classified into the dedicated observer scheme(DOS). A fuzzy logic based inference engine is adopted for the isolation of each faults. Having the fuzzy inference engine, the proposed FDIU resolve a few important problems of the conventional DOSs with conventional two valued logic. The ouputs of the proposed FDIU are not "ith fault occurred" but the grade of memberships that indicate the consistency of observered symptoms(residuals) with each fault symptoms stored in the rule base. The ouputs can easily be transferred to the ranking of the fault possibilities and it will provide very useful informations in monitoring the process. The simulation results show that the FDIU has very good diagnostic ability even in the noisy environment.

  • PDF

Hybrid Double Direction Blocking Sub-Module for MMC-HVDC Design and Control

  • Zhang, Jianpo;Cui, Diqiong;Tian, Xincheng;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1486-1495
    • /
    • 2019
  • Dealing with the DC link fault poses a technical problem for an HVDC based on a modular multilevel converter. The fault suppressing mechanisms of several sub-module topologies with DC fault current blocking capacity are examined in this paper. An improved half-bridge sub-module topology with double direction control switch is also designed to address the additional power consumption problem, and a sub-module topology called hybrid double direction blocking sub module (HDDBSM) is proposed. The DC fault suppression characteristics and sub-module capacitor voltage balance problem is also analyzed, and a self-startup method is designed according to the number of capacitors. The simulation model in PSCAD/EMTDC is built to verify the self-startup process and the DC link fault suppression features.