• Title/Summary/Keyword: Electrical equipment

Search Result 2,799, Processing Time 0.031 seconds

A Study on Applying The DO-178C to The Control SW Development of The Military Aircraft Intercom Based on CMMI (CMMI 기반 군 항공기 인터콤 탑재용 제어 소프트웨어 개발에 대한 DO-178C 적용 연구)

  • Yoon, In-Bok
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.415-423
    • /
    • 2015
  • The DO-178C guide, which is referenced as the software development guide when a certification of the airworthiness in the commercial airplane is acquired by FAA in US, is recently referenced for the local military aircraft airworthiness. This indicates that when the auditor of the military aircraft airworthiness looks over the software development documents, the auditor reviews if all of the documents are verified in accordance with the DO-178C guide. However, when we developed the military aircraft intercom, We developed its control software in accordance with the CMMI level 3, since there were no requirements for the compliance of the DO-178C guide. Therefore, When we consider the airworthiness of this intercomm system, The analysis for how much the software development based on the CMMI level 3 is different from the DO-178C guide is needed to prepare the essential software documents additionally. Thus, This study analyzes the differences between CMMI level 3 and DO-178C guide and provides that which data on the CMMI level 3 is necessary for the compliance of the aircraft airworthiness comparing with the DO-178C. The analyzed result can be applied at the software development of the other military aircraft avionics equipment based on the CMMI model environment considering the compliance of the military aircraft airworthiness.

LPG Cylinder Leak Experiment from Multiple Leak Scenarios (누출종류에 따른 LP가스용기 누출량 실증 실험)

  • Lee, Minkyung;Lee, Kang-Ok;Kim, Young Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2019
  • Unlike NG supplied through pipes, LPG is mainly used for independent storage of cylinders or small storage tanks. As LPG is widely used in islands and underdeveloped areas, accidents due to neglect of safety management are high. Houses and businesses that have LPG accidents are likely to be damaged due to relatively high population density. Therefore, the necessity of strengthening the safety management of LPG is constantly raised. Accordingly, in 1996, Korea Gas Safety Corporation conducted an LPG leak test. In this study, based on the 96-year experiment, the gas leakage measurement of LPG vessels was conducted by adding several conditions such as outside temperature and pipe condition. Through this, the trend of leakage for various scenarios of LPG leakage was examined. In the case of a gas leak, when the article which may affect the pressure such as a regulator is not connected, the leakage amount is greatly changed by the outside air temperature, and when the regulator is fastened, the influence of the outlet pressure is large. It is expected that the experiment can be used as basic data for determining gas accidents and leakages that may occur later.

Development of Current Limiting COS Fuse Link with Improved Overcurrent and Protection Coordination performance (과전류 차단과 보호협조 성능이 향상된 한류형 COS 퓨즈링크 개발)

  • Kim, Youn-Hyun;Kim, Young-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.129-136
    • /
    • 2020
  • A Cut Out Switch (COS) is used for line protection and pole transformer protection in power systems. The COS used to protect the pole transformer is installed on the power side of the pole transformer to protect the electric equipment from fault currents. The COS is composed largely of a body and a fuse holder, and when the fault current is energized, the element of the fuse link in the fuse holder is melted to block the fault current. The arc generated when the COS fuse link is blown causes fire and noise, causing discomfort to residents in the surrounding area, and the arc flame can cause secondary damage to the peripheral device. In this study, a current-limiting COS fuse with improved overcurrent blocking performance rather than explosion type was developed to solve the arc and noise problems during COS operation. The overcurrent breaking performance of the current-limiting COS improves the reliability by developing a striker and COS fuse bracket. In addition, this study aimed to verify the performance of the developed current-limiting COS fuse through a test at an authorized institution.

A Study on the Disaster Prevention Technology of the Switchboard with Upper and Lower Bending Type Seismic Pads (상하굴절형 내진패드를 설치한 수배전반 방재기술에 관한 연구)

  • Lee, Taeshik;Seok, Gumcheul;Lee, Jaewon;Kim, Taejin;Kim, Jaekwon;Cho, Woncheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2017
  • The purpose of this study is to investigate the effect of vertical and horizontal refraction on the lower part of the power supply and control system of various facilities and machinery that use electricity, so that the power distribution system, which is an important electric facility installed in buildings and public facilities, Type earthquake resistant pads to protect the substructure and prevent short-circuiting on the upper part of the system. The GR-63-CORE (Scale 8.3 class) It is earthquake disaster prevention and disaster prevention technology that satisfies seismic performance. As a research result, it is possible to protect the electricity and communication infrastructure, which can contribute to shortening the time for recovering the electric facilities to the normal state in case of an earthquake, and preventing the fire caused by the destruction of the electricity supply facility in case of an earthquake. As a result, it is possible to minimize the spread of fire that occurs when a large-scale earthquake occurs and to minimize the damage of people and damage to property, and it can contribute to the securing of electric infrastructure that enables citizens to quickly recover to daily life even after suffering a major earthquake. In addition, the technology can be applied to ensure the seismic resistance of the equipment in the communication and computer room, and it can be applied to various fields where the facility function can be stopped due to the shaking of the earthquake base.

Study of the Risk of Ignition due to Internal Combustion Engines in Areas with Potentially Explosive Gas Atmospheres (잠재적 폭발위험장소에서 내연기관에 의한 점화 위험성에 관한 연구)

  • Kim, Yun Seok;Rie, Dong Ho
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • Safety management in hazardous areas with potentially explosive gas atmospheres (here in after referred to as hazardous areas) in large scale facilities dealing with combustible or flammable materials at home and abroad is very important (significant) for the coexistence of the company and local society based on business continuity management (BCM) and reliance. For the safety management in hazardous areas, two systems are mainly used: (1) the control system for the prevention of combustible or flammable substances and (2) the explosion proof system for the elimination of ignition sources when flammable gases are leaked to inhibit the transition to fire or explosion accidents. While technology and regulations on explosion proof facilities or devices for electrical ignition sources are well developed and defined, those for thermal ignition sources need to be more developed and established. In this study, the internal combustion engine in hazardous areas was investigated to determine the risk of ignition. For this purpose, document searches were conducted on the relevant international standards and accidents cases and risk analysis reports. In addition, this study assessed the application cases of the diesel engine's safety equipment, such as spark arresters regarding the site of process safety management (PSM) system in central Korea. To practically apply these results to the hydrocarbon industry, the safety management method for explosion prevention in hazardous areas was provided by risk identification for ignition sources of internal combustion engines, such as diesel engines.

A Study of Arrow Performance using Artificial Neural Network (Artificial Neural Network를 이용한 화살 성능에 대한 연구)

  • Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.548-553
    • /
    • 2014
  • In order to evaluate the performance of arrow that manufactures through production process, it is used that personal experiences such as hunters who have been using bow and arrow for a long time, technicians who produces leisure and sports equipment, and experts related with this industries. Also, the intensity of arrow's impact point which obtains from repeated shooting experiments is an important indicator for evaluating the performance of arrow. There are some ongoing researches for evaluating performance of arrow using intensity of the arrow's impact point and the arrow's flying image that obtained from high-speed camera. However, the research that deals with mutual relation between distribution of the arrow's impact point and characteristics of the arrow (length, weight, spine, overlap, straightness) is not enough. Therefore, this paper suggests both the system that could describes the distribution of the arrow's impact point into numerical representation and the correlation model between characteristics of arrow and impact points. The inputs of the model are characteristics of arrow (spine, straightness). And the output is MAD (mean absolute distance) of triangular shaped coordinates that could be obtained from 3 times repeated shooting by changing knock degree 120. The input-output data is collected for learning the correlation model, and ANN (artificial neural network) is used for implementing the model.

Development and Verification of Modular 3U Cubesat Standard Platform (3U 큐브위성 표준 플랫폼의 개발)

  • Song, Sua;Lee, Soo-Yeon;Kim, Hongrae;Chang, Young-Keun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.65-75
    • /
    • 2017
  • This study proposes development of 3U CubeSat standard platform whose function and performance are verified via KAUSAT-5 development. 3U CubeSat platform specification was selected for the design of 3U Cubesat standard platform by examining existing CubeSat and state-of-art technology, and consequently a universally usable 3U CubeSat platform was designed. Standard platform was manufactured in 1.5U size and developed with a modular concept to be able to add and expand payloads and ADCS actuators for meeting the user's needs. In addition, in case of the power system, the solar panel, the battery, and the deployment mechanism are designed to be configured by the user. In the mechanical system design of a standard platform, subsystem and micro equipment functions/performance could be integrated and miniaturized on micro-sized PCBs and maximized electrical capability to accommodate multiple payloads. In the development of the 3U CubeSat, the satellite platform adopts the developed standard platform, which can reduce the cost and schedule for the whole satellite development by reducing the additional function verification.

A Study On Hardware Design for High Speed High Precision Neutron Measurement (고속 고정밀 중성자 측정을 위한 하드웨어 설계에 관한 연구)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • In this paper, a hardware design method is proposed for high speed high precision neutron radiation measurements. Our system is fabricated to use a high performance A/D Converter for digital data conversion of high precision and high speed analog signals. Using a neutron sensor, incident neutron radiation particles are detected; a precision microcurrent measurement module is also included: this module allows for more precise and rapid neutron radiation measurement design. The high speed high precision neutron measurement hardware system is composed of the neutron sensor, variable high voltage generator, microcurrent precision measurement component, embedded system, and display screen. The neutron sensor detects neutron radiation using high density polyethylene. The variable high voltage generator functions as a 0 ~ 2KV variable high voltage generator that is robust against heat and noise; this generator allows the neutron sensor to perform normally. The microcurrent precision measurement component employs a high performance A/D Converter to precisely and swiftly measure the high precision high speed microcurrent signal from the neutron sensor and to convert this analog signal into a digital one. The embedded system component performs multiple functions including neutron radiation measurement for high speed high precision neutron measurements, variable high voltage generator control, wired and wireless communications control, and data recording. Experiments using the proposed high speed high precision neutron measurement hardware shows that the hardware exhibits superior performance compared to that of conventional equipment with regard to measurement uncertainty, neutron measurement rate, accuracy, and neutron measurement range.

A Study on the Safety Grounding for Prevention of Electric Shock Hazard in Construction of Industrial Plant in Maritime Landfill Area (해상 매립 지역 산업 플랜트 건설 시 감전 재해 예방을 위한 안전 접지에 관한 연구)

  • Kim, Hong-Yong;Jang, Ung-Burm
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • In our society, the advanced, advanced, and information industries have continued to grow and now live in the era of the fourth industrial revolution. As the industry develops, the load of the users has also increased so much that it is deepened by the energy shortage phenomenon and the construction of additional energy facilities is required. Therefore, energy plant construction work is being actively carried out in the coastal area. In particular, it is common to build a plant in the ground by filling the coast with soil in other regions, reflecting the fact that Korea is lacking in the country when constructing power plants, gas and petrochemical plants. Current domestic grounding designs are designed or constructed to suit only the use of grounding resistors based on the electrical equipment design technical standards. However, in the case of a plant facility constructed in the untested buried soil, when the lightning current and the abnormal current are inputted, the facility operator or the user due to the elevation of the ground potential is seriously exposed to the risk of electric shock disaster. In this paper, we analyze the ground resistivity of the landfilled soil and use a computer program (CDEGS) based on KS C IEC 61936-1, We analyze the contact voltage and stratification voltage and propose a grounding design optimized for plant installation.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF