• Title/Summary/Keyword: Electrical corrosion

Search Result 470, Processing Time 0.028 seconds

OPGW Corrosion Detection Using Nondestructive Test Method

  • Jeong, Jae-Kee;Yoon, Gi-Gab;Kang, Ji-Won;Yang, Hai-Won
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • This paper deals with some characteristics of a nondestructive eddy current detector to measure OPGW(Composite overhead ground wire with optical fiber) corrosion. This detector is designed to automatically run on OPGW and to continuously inspect the corrosion of the line. The impedance of the eddy current coil changing by any corrosion phenomenon of OPGW is analyzed. Several performances of the detector are described and experimental procedures and test results are also given. As a result, it is shown that the implemented detector can be measured some quantitative data for crack, broken wires or severe deteriorations in OPGW. This nondestructive test method would be applied to improve the reliability and efficiency of transmission line in service.

  • PDF

Anti-corrosion Property of the CNT/PVDF Composite Coating Films for Preventing the Corrosion of the Ground System (접지시스템의 부식 방지를 위한 CNT/PVDF 복합막의 내부식 특성)

  • Lim, Young Taek;Shin, Paik-Kyun;Choi, Sun-Kyu;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.736-739
    • /
    • 2014
  • In this paper, we propose a enhanced anti-corrosion property of the ground system by coating the CNT/PVDF composite film on it. Polymer material used for preventing the corrosion of ground system is polyvinylidene fluoride (PVDF), and conducting filler for obtaining conductivity of the composite film is multi-walled carbon nanotubes (MWCNTs). The MWCNTs were dispersed in the organic solvent of methyl ethyl ketone 2-butanone (MEK) with different concentration ratios, and the PVDF was solved in the MEK solvent with constant concentration ratio of 1 wt%. The CNT/PVDF composite solution was perpared by mixing and re-dispersing the CNT solution and the PVDF solution. Finally, the CNT/PVDF composite films were fabricated by the spray coating method using the above composite solution. Electrical conductivity, surface states, and anti-corrosion property of the CNT/PVDF composite films coated on the Cu substrate were evaluated. We found that the CNT/PVDF composite film showed relatively low resistance, hydrophobic surface state, and chemical stability. Consequently, we could improve the anti-corrosion property and maintain the electrical conductivity of the ground system by coating the CNT/PVDF composite film on it.

A Study on the Modelling Method of Underwater Electric Field Signature due to Ship's Corrosion (선체 부식에 의한 수중 전기장 신호 특성 모델링 기법 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.876-878
    • /
    • 2008
  • The galvanic corrosion of a vessel, or systems fitted to minimize the ship's corrosion such as ICCP(Impressed Current Cathodic Protection) system and sacrificial anodes, can lead to significant electrical current flow in the sea. The presence of vessel's current sources associated with corrosion will give rise to detectable electric field surrounding the vessel and can put it at risk from mine threats. For this reason, it is necessary to design corrosion protection systems so that they don't only prevent a hull corrosion but also minimize the electric field signature. In this paper, we describe theoretical backgrounds of underwater electric field signature due to corrosion and corrosion protection system on naval vessels and analysis results of the electric field according to ICCP anode arrangement.

  • PDF

FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.297-314
    • /
    • 2016
  • As the study of internal corrosion of pipeline need a large number of experiments as well as long time, so there is a need for new computational technique to expand the spectrum of the results and to save time. The present work represents a new non-destructive evaluation (NDE) technique for detecting the internal corrosion inside pipeline by evaluating the dielectric properties of steel pipe at room temperature by using electrical capacitance sensor (ECS), then predict the effect of pipeline environment temperature (${\theta}$) on the corrosion rates by designing an efficient artificial neural network (ANN) architecture. ECS consists of number of electrodes mounted on the outer surface of pipeline, the sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of two dimensional capacitance sensors are illustrated. The variation in the dielectric signatures was employed to design electrical capacitance sensor (ECS) with high sensitivity to detect such defects. The rules of 24-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. A feed-forward neural network (FFNN) structure are applied, trained and tested to predict the finite element (FE) results of corrosion rates under room temperature, and then used the trained FFNN to predict corrosion rates at different temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an FFNN results, thus validating the accuracy and reliability of the proposed technique and leads to better understanding of the corrosion mechanism under different pipeline environmental temperature.

The Effects of AC Corrosion on Underground Gas Pipeline Running Parallel with High Power Cables (전력케이블과 가스배관의 병행구간에 대한 교류부식 영향)

  • 배정효;김대경;김기준
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.10
    • /
    • pp.577-582
    • /
    • 2000
  • This paper analyze the interference problems, especially Ac corrosion when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism(inductive coupling, conductive coupling, resistive coupling), AC corrosion, limitation of safety voltage, modeling of power cables, gas pipeline and grounding systems, analysis of induction voltage and optimal arrangement of power cables.

  • PDF

A Study on Grooving Corrosion at the Weld of a Low Carbon Steel Pipe Made by Electrical Resistance Welding (탄소강관의 ERW 용접부 홈부식 손상에 관한 연구)

  • Kim Yong;Lee Bo-Young
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.58-64
    • /
    • 2004
  • Although leakage at a low carbon steel pipe made by electrical resistance welding (ERW) was reported due to grooving corrosion, the cause for the corrosion has not yet been cleared. In order to clarify the main cause, failure analysis on the leaked pipe was carried out, followed by metallographic investigation and corrosion test for the various ERW pipe made with different welding heat input. The microstructure, particularly inclusion content, of the weldment is dependant on the welding heat input applied. For an improper low heat input, the amount of inclusion at the weld was high. High inclusion content accelerated grooving corrosion at the weld. It is therefore that welding heat input should be controlled based on the carbon content of the pipe in order to improve the corrosion resistance of the ERW pipe.

The Effects of Fluorine Passivation on $SF_6$ Treatment for Anti-corrosion after Al(Cu 1%) Plasma Etching (Al(Cu 1%)막의 플라즈마 식각후 부식 억제를 위한 $SF_6$ 처리시 fluorine passivation 효과)

  • 김창일;권광호;백규하;윤용선;김상기;남기수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.203-207
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, the $SF_6$ plasma treatment subsequent to the etch has been carried out. A passivation layer is formed by fluorine-related compounds on etched Al-Cu alloy surface after $SF_6$ treatment, and the layer suppresses effectively the corrosion on the surface as the RF power of $SF_6$ treatment increases. The corrosion could be suppressed successfully with $SF_6$ treatment in the RF power of 150watts.

  • PDF

Evaluation of Grooving Corrosion and Electrochemical Properties of H2S Containing Oil/Gas Transportation Pipes Manufactured by Electric Resistance Welding

  • Rahman, Maksudur;Murugan, Siva Prasad;Ji, Changwook;Cho, Yong Jin;Cheon, Joo-Yong;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • Electrical Resistance Welding (ERW) on a longitudinal seam-welded pipe has been extensively used in oil and gas pipelines. It is well known that the weld zone commonly suffers from grooving corrosion in ERW pipes. In this paper, the grooving corrosion performances of API X65 grade non-sour service (steel-A) and API X70 grade sour gas resistant (steel-B) steel electrical resistance welding pipelines were evaluated. The microstructure of the bondline is composed of coarse polygonal ferrite grains and several elongated pearlites. The elongated pattern is mainly concentrated in the center of the welded area. The grooving corrosion test and electrochemical polarization test were conducted to study the corrosion behavior of the given materials. A V-shaped corrosion groove was found at the center of the fusion zone in both the steel-A and steel-B ERW pipes, as the corrosion rate of the bondlines is higher than that of the base metal. Furthermore, the higher volume fraction of pearlite at the bondline was responsible for the higher corrosion rate at the bondline of both types of steel.

A study of Protection for electrical corrosion by stray current in DC railway system (직류전기철도시스템에서의 누설전류에 의한 전식방지에 대한 연구)

  • Lee Jae-young
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.748-753
    • /
    • 2005
  • The stray current(leakage current) in DC railway system like as Metro Subway and LRT system happens electrical corrosion on theses superstructure facilities and also underground facilities that causes the public property losses. we must study and establish on the theoretical concept and concrete phenomena for electrical corrosion, In the construction period we intend to review and find out a lot of solution to minimize theses losses. we must investigate, measure and analysis natural atmosphere of these facilities locations to present a maintenance management guide for the upcoming operation stage.

  • PDF

Corrosion Characteristics of Diffusion Barrier in Copper CMP (구리 CMP시 확산방지막의 부식특성)

  • Lee, Do-Won;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Lee, Chul-In;Chang, Eui-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.162-165
    • /
    • 2003
  • The corrosion characteristics of diffusion barrier in Copper CMP has been investigated. Key experimental variables that has been investigated are the corrosion rate by different agents containing slurry of Cu CMP. Whenever Cu and Ta films were corroded adding each oxidizer, the corrosion rate of Ta was much lower than that of Cu. That is, the difference in the corrosion rates of Ta by oxidizer was not larger as compared with Cu. As corroded by complexing agents, the corrosion rate of Ta was close to O. The corrosion rate of Ta increased as added $HNO_3$ and $CH_3COOH$ compared with the reference slurry; on the other hand, it decreased with addition of HF. In addition, resulting corrosion rate went up with lower pH of agent. The corrosion rates by agents were however significant small; hence, it doesn't affect on the removal rate of Cu CMP practically. Consequently, this can be explained by assuming that the mechanical effect dominates than the chemical effect on the polishing rate of Ta(TaN).

  • PDF