• 제목/요약/키워드: Electrical conductance

검색결과 299건 처리시간 0.023초

Pd nanoparticles on poly(amidoamine) dendrimers modified single-walled carbon nanotubes as highly sensitive hydrogen gas sensors

  • Lee, Jun-Min;Lee, Eun-Song-Yi;Jeon, Kye-Jin;Ju, Seong-Hwa;Jung, Yeong-Ri;Kim, Sung-Jin;Lee, Woo-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.93-93
    • /
    • 2009
  • In order to overcome the lack of reactivity with hydrogen gas ($H_2$) and utilize unique properties of Carbon Nano Tubes (CNTs) for the application to hydrogen sensors, there have been intensive works on the surface functionalization of CNTs with various types of nanoparticles including Pd. In the present work, we have investigated the effect of dendrimers and Pd nanoparticles to the hydrogen sensing properties of CNTs by comparing three types of samples: Pd/SWNTs (Sample I), Pd/dendrimer/SWNTs (Sample II) and heat-treated Pd/dendrimers/SWNTs (Sample III). As a result of IV measurement under the $H_2$ and air, sample I was found to have a high sensitivity (25%) to $H_2$, but to have a very slow response time (324 s) and recovery rate. On the other hand, Sample II was found to show much faster response time (3 s) and good recovery rate but lower sensitivity (8.6%) than Sample I which is due to induced dipole moments in the dendrimers. Interestingly, Sample III showed both fast response time (7 s) and high sensitivity (25%), indicating that the pyrolysis of the dendrimers during heat treatment which reduce the distance between the surface of the SWNTs and the functionalized Pd nanoparticles plays a key role in improving the sensitivity. The pyrolysis of the dendrimers in Pd nanoparticle-dendrimer-SWNTs was found to enable a significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of $H_2$ in air. Our results demonstrate that the Pd Nanoparticle-Grafted Single-Walled Carbon Nanotubes(SWNTs) with Dendrimers can be used to detect hydrogen, makingoutstanding properties such as fast response, and recovery time, high sensitivity, low detection limit at room temperature compared with other types of hydrogen sensors.

  • PDF

Low-Voltage Activated $Ca^{2+}$ Current Carried via T-Type Channels in the Mouse Egg

  • Yang, Young-Sun;Park, Young-Geun;Cho, Soo-Wan;Cheong, Seung-Jin;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • 제27권1호
    • /
    • pp.107-114
    • /
    • 1993
  • Most of voltage operated $Ca^{2+}$ channels can be divided into three types (T-, N-, and L-type), according to the electrical and pharmacological properties. Their distribution is closely related to cell specific functions. Properties of the voltage activated $Ca^{2+}$ current in mouse eggs were examined to classify channel types and to deduce the function by using whole cell voltage clamp technique. $Ca^{2+}$ currents appeared below -40 mV and reached a maximum at -15 mV (half maximum was -31 mV), then decayed rapidly (inactivation time constant ${\tau}=28.2{\pm}9.59$ ms at -10 mV within 50 ms after the onset of step depolarization. Activation and inactivation of the $Ca^{2+}$ channel was steeply dependent on voltage, in a relatively low range of $-70\;mV{\sim}-10 mV,$ half maximum of activation was -31 mV and that of inactivation was -39 mV, respectively. This current was not decreased significantly by nifedipine, a specific dihydropyridine $Ca^{2+}$ channel blocker in the range of $1\;{\mu}M\;to\;100{\mu}M.$ The inhibitory effect of $Ni^{2+}\;on\;Ca^{2+}$ current was greater than that of $Cd^{2+}.$ The conductance of $Ba^{2+}$ through the channel was equal to or lower than that of $Ca^{2+}$ These results implied that $Ca^{2+}$ current activated at a lower voltage in the mouse egg is carried via a $Ca^{2+}$ channel with similar properties that of the T-type channel.

  • PDF

스퍼터링 방법으로 성장시킨 나노구조의 Ga 농도 변화에 따른 형상 변화

  • 김영이;우창호;조형균
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.23.1-23.1
    • /
    • 2009
  • ZnO is of great interest for various technological applications ranging from optoelectronics to chemical sensors because of its superior emission, electronic, and chemical properties. In addition, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. To date, several approaches have been proposed for the growth of one-dimensional (1D) ZnO nanostructunres. Several groups have been reported the MOCVD growth of ZnO nanorods with no metal catalysts at $400^{\circ}C$, and fabricated a well-aligned ZnO nanorod array on a PLD prepared ZnO film by using a catalyst-free method. It has been suggested that the synthesis of ZnO nanowires using a template-less/surfactant-free aqueous method. However, despite being a well-established and cost-effective method of thin film deposition, the use of magnetrons puttering to grow ZnO nanorods has not been reported yet. Additionally,magnetron sputtering has the dvantage of producing highly oriented ZnO film sat a relatively low process temperature. Currently, more effort has been concentrated on the synthesis of 1D ZnO nanostructures doped with various metal elements (Al, In, Ga, etc.) to obtain nanostructures with high quality,improved emission properties, and high conductance in functional oxide semiconductors. Among these dopants, Ga-doped ZnO has demonstrated substantial advantages over Al-doped ZnO, including greater resistant to oxidation. Since the covalent bond length of Ga-O ($1.92\;{\AA}$) is nearly equal to that of Zn-O ($1.97\;{\AA}$), high electron mobility and low electrical resistivity are also expected in the Ga-doped ZnO. In this article, we report the successful growth of Ga-doped ZnO nanorods on c-Sapphire substrate without metal catalysts by magnetrons puttering and our investigations of their structural, optical, and field emission properties.

  • PDF

The Substitution of Inkjet-printed Gold Nanoparticles for Electroplated Gold Films in Electronic Package

  • 장선희;강성구;김동훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.25.1-25.1
    • /
    • 2011
  • Over the past few decades, metallic nanoparticles (NPs) have been of great interest due to their unique mesoscopic properties which distinguish them from those of bulk metals; such as lowered melting points, greater versatility that allows for more ease of processability, and tunable optical and mechanical properties. Due to these unique properties, potential opportunities are seen for applications that incorporate nanomaterials into optical and electronic devices. Specifically, the development of metallic NPs has gained significant interest within the electronics field and technological community as a whole. In this study, gold (Au) pads for surface finish in electronic package were developed by inkjet printing of Au NPs. The microstructures of inkjet-printed Au film were investigated by various thermal treatment conditions. The film showed the grain growth as well as bonding between NPs. The film became denser with pore elimination when NPs were sintered under gas flows of $N_2$-bubbled through formic acid ($FA/N_2$) and $N_2$, which resulted in improvement of electrical conductance. The resistivity of film was 4.79 ${\mu}{\Omega}$-cm, about twice of bulk value. From organic anlayses of FTIR, Raman spectroscopy, and TGA, the amount of organic residue in the film was 0.43% which meant considerable removal of the solvent or organic capping molecules. The solder ball shear test was adopted for solderability and shear strength value was 820 gf (1 gf=9.81 mN) on average. This shear strength is good enough to substitute the inkjet-printed Au nanoparticulate film for electroplating in electronic package.

  • PDF

Pharmacological evidences that vasoactive intestinal polypeptide is not involved in non-adrenergic non-cholinergic relaxation in rabbit corpus cavernosum

  • Park, Mi-Sun;Hong, Eun-Ju;Hong, Sung-Cheul
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.217-217
    • /
    • 1996
  • The putative role of vasoactive intestinal polypeptide (VIP) as non-adrenergic non-cholinergic (NANC) neurotransmitter has been studied in rabbit corpus cavernosum. In the presence of atropine and guanethidine the short and prolonged electrical field stimulation (EFS, 2~16 ㎐) induced a frequency-dependent relaxation which was abolished by tetrodotoxin (0.3 ${\mu}$M), a nerve conductance blocker. The neurogenic relaxant reponses were not affected in the presence of VIP-inactivating peptidase, ${\alpha}$-chymotrypsin (2 units/$m\ell$), whereas VIP-induced relaxation were completely abolished. Inhibition of nitric oxide synthase by N$\^$G/-nitro-L-arginine (10~100 ${\mu}$M) caused concentration-dependent inhibition to the neurogenic relaxant responses and at 100 ${\mu}$M the relaxations were virtually abolished. In contrast NO (3~30 ${\mu}$M) and VIP (0.001~l ${\mu}$M)-induced relaxation were unaffected. The inhibitory effect of L-NNA was reversed in the presence of L-arginine (5 mM), the precursor of the NO biosynthesis. Hemog1obin (20~60 ${\mu}$M), sequestering NO in the extracellular space, abolished the NO-evoked relaxation and also caused a concentration-dependent inhibition to the neurogenic relaxation. These observation indicate that NANC relaxation induced by prolonged EFS of rabbit corpus cavernosum is also mediated mainly by nitric oxide as same as that of short EFS, and suggest that VIP is not involved in NANC relaxation of rabbit corpus cavernosum and NO would not be produced by VIP in this tissue.

  • PDF

Susceptibility of pentylenetetrazole-induced seizures in mice with Cereblon gene knockout

  • Jeon, Seung-Je;Ham, Jinsil;Park, Chul-Seung;Lee, Boreom
    • BMB Reports
    • /
    • 제53권9호
    • /
    • pp.484-489
    • /
    • 2020
  • Epilepsy is a neurological disorder characterized by unpredictable seizures, which are bursts of electrical activity that temporarily affect the brain. Cereblon (CRBN), a DCAFs (DDB1 and CUL4-associated factors), is a well-established protein associated with human mental retardation. Being a substrate receptor of the cullin-RING E3 ubiquitin ligase (CRL) 4 complex, CRBN mediates ubiquitination of several substrates and conducts multiple biological processes. In the central nervous system, the large-conductance Ca2+-activated K+ (BKCa) channel, which is the substrate of CRBN, is an important regulator of epilepsy. Despite the functional role and importance of CRBN in the brain, direct injection of pentylenetetrazole (PTZ) to induce seizures in CRBN knock-out mice has not been challenged. In this study, we investigated the effect of PTZ in CRBN knock-out mice. Here, we demonstrate that, compared with WT mice, CRBN knock-out mice do not show the intensification of seizures by PTZ induction. Moreover, electroencephalography recordings were also performed in the brains of both WT and CRBN knockout mice to identify the absence of significant differences in the pattern of seizure activities. Consistently, immunoblot analysis for validating the protein level of the CRL4 complex containing CRBN (CRL4Crbn) in the mouse brain was carried out. Taken together, we found that the deficiency of CRBN does not affect PTZ-induced seizure.

양이온 계면활성제인 DPC와 TTAB의 혼합마이셀화에 대한 열역학적 고찰 (Thermodynamic Study on the Mixed Micellization of Cationic Surfactants DPC and TTAB)

  • 이병환
    • 대한화학회지
    • /
    • 제43권6호
    • /
    • pp.614-620
    • /
    • 1999
  • 양이온 계면활성제인 Dodecylpyridinium chloride(DPC)와 Tetradecyltrimethylammonium bromide(TTAB)로 구성된 혼합계면활성제의 임계마이셀농도(CMC)와 반대이온의 결합상수(${\beta}$)를 $4^{\circ}C$에서 $36^{\circ}C$까지 전도도법으로 측정하였다. CMC와 ${\beta}$값의 온도에 따른 변화로부터 DPC/TTAB 혼합계면활성제의 마이셀화에 대한 여러 가지 열역학 함수값(${\Delta}C_p$, ${\Delta}G^o_m$, ${\Delta}H^o_m$${\Delta}S^o_m$)을 계산하였다. ${\Delta}C_p$${\Delta}G^o_m$은 측정한 온도범위 내에서 모두 음의 값을 나타내었으며, ${\Delta}S^o_m$은 모두 양의 값을 나타내었다. 한편 ${\Delta}H^o_m$은 낮은 온도에서는 양의 값을 그리고 높은 온도에서는 음의 값을 띠었다. 또한 이러한 열역학 함수값은 온도와 몰분율 조성 (${\alpha}_DPC$)에 따라 큰 변화를 보였다.

  • PDF

金屬錯이온의 폴라로그래피的 파라미터에 미치는 壓力의 影響 (Effect of High Pressure on Polarographic Parameters of Metal Complex Ion)

  • 이흥락;배준웅;윤종훈
    • 대한화학회지
    • /
    • 제31권5호
    • /
    • pp.444-451
    • /
    • 1987
  • 에틸렌디아민, 프로필렌디아민 및 디에틸렌트리아민의 구리(II), 카드뮴(II) 및 아연(II)착이온의 桓元에 대하여 압력에 따른 폴라로그래피적 파라미터의 依存性을 조사하였다. 水銀滴下電極, 고인수은전극 및 나선형 백금선을 각각 作業電極, 基準電極 및 補助電極으로 사용하였다. 압력이 1기압에서 1,500기압으로 증가함에 따라 금속착이온의 還元半波電位는 陰電位 쪽으로 이동하였으며, 擴散電流는 상당히 커졌다. 이러한 현상은 전해질용액의 물리적 성질 곧 密度, 粘性度, 誘電常數, 電氣傳導度 등이 압력이 증가함에 따라 커지기 때문이다. 압력을 증가시키면 log plot의 기울기 값이 커지므로 환원반응의 可逆性은 나빠지고 있다. 25$^{\circ}$C ~ 35$^{\circ}$C의 온도범위에서 측정한 확산전류의 溫度係數가 압력을 증가시켜도 2%정도이므로 高壓下에서 폴라로그래피적 환원반응은 擴散支配的이다. 또 실험압력 범위내에서 금속착이온의 확산전류와 농도 사이에는 線形關係가 성립하였다.

  • PDF

실리콘 태양전지의 금속전극 특성 (Characteristics of metal contact for silicon solar cells)

  • 조은철;김동섭;민요셉;조영현;;이수홍
    • 태양에너지
    • /
    • 제17권1호
    • /
    • pp.59-66
    • /
    • 1997
  • 개방전압과 단락전류와 같은 태양전지 출력변수들은 접합깊이, 도핑농도, 금속접합 및 태양전지구조에 의한 변수들이다. 태양전지 설계의 중요한 요소로서 인이 도핑된 에미터와 금속사이의 금속접합은 일함수 차이가 작아 낮은 직렬저항을 가져야 한다. PESC 태양전지는 금속 접합장벽 전극으로 티타늄을 사용한다. 새로운 접합장벽 전극물질로 티타늄과 일함수가 비슷하지만 전기전도도가 우수한 크롬은 금속 접합장벽 전극으로 유망한 금속이다. 티타늄은 일함수 차가 작지만, 접합장벽으로 크롬은 태양전지 제조시 티타늄보다 우수한 전기적 특성들을 갖는다. 본 논문에서는 실리콘 태양전지의 접합장벽 금속전극의 특성을 비교 분석하였다.

  • PDF

2차원 MT 모델링을 이용한 한반도에서의 해양효과 분석 (Analysis on the sea effect in the Korean Peninsula using 2-D MagnetoTelluric(MT) modeling)

  • 양준모;권병두;이춘기
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.259-264
    • /
    • 2006
  • 심부 지각구조 조사를 위한 MT 및 GDS 탐사에서 주변 해양은 지각 구조의 반응을 왜곡시키는 역할을 한다. 본 연구에서는 MT 2-D 모델링을 이용하여 한반도에서 주변 해양의 효과를 분석하고, 해양 효과의 주파수적, 공간적 의존성을 조사하였다. 동해와 서해는 각각의 컨덕턴스 차이 때문에 공간적, 주파수적 영향이 다른 양상을 보였다. 전반적으로 TM 모드보다 TE 모드의 반응이 덜 왜곡되었으며, TM 모드 반응은 저주파수로 갈수록 1-D 모델 반응과 그 차이가 증가하였다. 한반도의 경우, 주어진 1-D 구조에서 획득 가능한 주파수 하한을 0.001Hz라 가정했을 때, 동해로부터 약 100km 안팎, 서해로부터 약 40-50km 정도 이격되어야 해양의 영향을 무시할 수 있으며, 이 이격거리는 지하의 1-D 구조와 주파수에 의존적이다.

  • PDF