• Title/Summary/Keyword: Electrical circuit practical training

Search Result 3, Processing Time 0.016 seconds

Production of Virtual Electrical Circuit Practice Education Contents based on Mixed Reality using Meta Quest Pro (메타 퀘스트 프로를 활용한 혼합현실 기반 가상 전기회로 실습교육 콘텐츠 제작)

  • Sumin Kong;Jongseon Kim;Goohyun Jeong;Gyeongbin Roh;Esther Park;Yunsik Cho;Jinmo Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.61-69
    • /
    • 2024
  • Mixed reality(MR) technology combines the advantages of virtual reality(VR) and augmented reality(AR) technology, allowing MR users to interact with virtual objects against the background of the real world. In addition, since virtual objects interact with the real world, users can experience a higher immersion. This study proposes electric circuit practical training content using Meta Quest Pro to produce immersive MR content based on reality. To this end, first, the development process for producing MR content by linking Meta Quest Pro equipment with the Unity 3D engine is organized. Then, based on the traditional electric circuit practical training method used in elementary school science classes, virtual electric circuit practical training content with the same training method and operation process is produced based on MR. Finally, survey experiments are conducted to analyze the presence and experience of the MR-based educational environment provided using the produced content. Through this, the usability of the proposed practical training content is evaluated and future research directions are suggested.

A Study on the Short-circuit Protection System for Learning Teaching Instruction Using Incandescent Light Bulb (백열전구를 이용한 학습 교구용 단락보호장치에 대한 고찰)

  • Hong-yong Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.844-850
    • /
    • 2023
  • Purpose: This paper is about the development of a short-circuit protection power supply device using incandescent bulbs and its application for educational materials. This article, which considers electrical safety and energy conservation at the same time, has many kinds of potential applications for both educational and industrial areas. The above mentioned short-circuit protection power supply device using incandescent bulbs enhances safety and efficiency compared to normal current power supply devices. Additionally, as an educational materials, it can be used for electric safety training, and provides practical electrical safety knowledge on our actual life. Method: Using incandescent bulbs, design new type of short-circuit protection power supply device, and through verifying the function and safety of the device, make new type device, and applying it for an educational tool. Conclusion: This study is to develop new type of power supply device, and verify the possibility of the application for the device as an educational materials. Through this research, show an innovative solution, which contribute to electrical safety and energy conservation, and open the potential possibility on educational and industrial sectors.This kind of research is expected to contributes to enhanced research, and education on electrical safety and energy conservation management.

Paddling Posture Correction System Using IMU Sensors

  • Kim, Kyungjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.86-92
    • /
    • 2018
  • In recent times, motion capture technology using inertial measurement unit (IMU) sensors has been actively used in sports. In this study, we developed a canoe paddle, installed with an IMU and a water level sensor, as a system tool for training and calibration purposes in water sports. The hardware was fabricated to control an attitude heading reference system (AHRS) module, a water level sensor, a communication module, and a wireless charging circuit. We also developed an application program for the mobile device that processes paddling motion data from the paddling operation and also visualizes it. An AHRS module with acceleration, gyro, and geomagnetic sensors each having three axes, and a resistive water level sensor that senses the immersion depth in the water of the paddle represented the paddle motion. The motion data transmitted from the paddle device is internally decoded and classified by the application program in the mobile device to perform visualization and to operate functions of the mobile training/correction system. To conclude, we tried to provide mobile knowledge service through paddle sport data using this technique. The developed system works reasonably well to be used as a basic training and posture correction tool for paddle sports; the transmission delay time of the sensor system is measured within 90 ms, and it shows that there is no complication in its practical usage.