• Title/Summary/Keyword: Electrical circuit

Search Result 7,395, Processing Time 0.029 seconds

A Temperature- and Supply-Insensitive 1Gb/s CMOS Open-Drain Output Driver for High-Bandwidth DRAMs (High-Bandwidth DRAM용 온도 및 전원 전압에 둔감한 1Gb/s CMOS Open-Drain 출력 구동 회로)

  • Kim, Young-Hee;Sohn, Young-Soo;Park, Hong-Jung;Wee, Jae-Kyung;Choi, Jin-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.54-61
    • /
    • 2001
  • A fully on-chip open-drain CMOS output driver was designed for high bandwidth DRAMs, such that its output voltage swing was insensitive to the variations of temperature and supply voltage. An auto refresh signal was used to update the contents of the current control register, which determined the transistors to be turned-on among the six binary-weighted transistors of an output driver. Because the auto refresh signal is available in DRAM chips, the output driver of this work does not require any external signals to update the current control register. During the time interval while the update is in progress, a negative feedback loop is formed to maintain the low level output voltage ($V_OL$) to be equal to the reference voltage ($V_{OL.ref}$) which is generated by a low-voltage bandgap reference circuit. Test results showed the successful operation at the data rate up to 1Gb/s. The worst-case variations of $V_{OL.ref}$ and $V_OL$ of the proposed output driver were measured to be 2.5% and 7.5% respectively within a temperature range of $20^{\circ}C$ to $90^{\circ}C$ and a supply voltage range of 2.25V to 2.75V, while the worst-case variation of $V_OL$ of the conventional output driver was measured to be 24% at the same temperature and supply voltage ranges.

  • PDF

A Study on Power Conversion System for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환장치에 관한 연구)

  • Kim, Ju-Yong;Jung, Sang-Hwa;Mun, Sang-Pil;Ryu, Jae-Yup;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-24
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V]. In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch $S_5\;and\;S_6$ in the secondary switch which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household

Identification of Motor Parameters and Improvement of Voltage Error for Improvement of Back-emf Estimation in Sensorless Control of Low Speed Operation (저속 센서리스 제어의 역기전력 추정 성능 향상을 위한 모터 파라미터 추정과 전압 오차의 개선)

  • Kim, Kyung-Hoon;Yun, Chul;Cho, Nae-Soo;Jang, Min-Ho;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.635-643
    • /
    • 2018
  • This paper propose a method to identify the motor parameters and improve input voltage error which affect the low speed position error of the back-emf(back electromotive force) based sensorless algorithm and to secure the operation reliability and stability even in the case where the load fluctuation is severe and the start and low speed operation frequently occurs. In the model-based observer used in this paper, stator resistance, inductance, and input voltage are particularly influential factors on low speed performance. Stator resistance can cause resistance value fluctuation which may occur in mass production process, and fluctuation of resistance value due to heat generated during operation. The inductance is influenced by the fluctuation due to the manufacturing dispersion and at a low speed where the change of the current is severe. In order to find stator resistance and inductance which have different initial values and fluctuate during operation and have a large influence on sensorless performance at low speed, they are commonly measured through 2-point calculation method by 2-step align current injection. The effect of voltage error is minimized by offsetting the voltage error. In addition, when the command voltage is used, it is difficult to estimate the back-emf due to the relatively large distortion voltage due to the dead time and the voltage drop of the power device. In this paper, we propose a simple circuit and method to detect the voltage by measuring the PWM(Pulse Width Modulation) pulse width and compensate the voltage drop of the power device with the table, thereby minimizing the position error due to the exact estimation of the back-emf at low speed. The suitability of the proposed algorithm is verified through experiment.

A Study on Three-phase Imbalance of a Power Transmission Line due to Installation of a Passive Loop Conductor (수동루프에 의한 송전선로 상불평형 발생에 관한 연구)

  • 김종형;신명철;최상열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-38
    • /
    • 2003
  • Among mitigation techniques for electric and magnetic field (EMF) from an overhead transmission line a passive loop is a way that can be cheap and easily installed on the existing towers and have a satisfactory effect as well. However current induced in the passive loop causes transmission power loss and the phase imbalance increases since geometrical asymmetry of the transmission lines becomes larger. So in order to evaluate the power loss and the phase imbalance due to a passive loop, this paper represent a 345[kV] 1-circuit flat type transmission line as asymmetrical 3-phase distributed parameter line model where the effect of a passive loop is embedded in the line parameters, and then formulates differential equations. By solving these equations voltages and currents of each phase at receiving end become known. We find out that power losses occur differently at each phase and positive sequence component decreases at receiving end while negative sequence component increase. In general phase imbalance due to a passive loop is slight, but it increases in proportional to the induced current and length of section where the passive loop is installed. Thus the phase imbalance should be included in terms of cost for introducing a passive loop.

The Development of Portable Digital X-ray Power Supply Unit for Emergency Medical Services (응급의료에서 이용될 휴대용 디지털 X-ray 전원장치 개발)

  • Cho, Dong-Heon;Koo, Kyung-Wan;Yong, Hae-Sool
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.125-131
    • /
    • 2006
  • The existing X-ray generators are either ones which are settled at fixed places or ones which are movable to sick rum. Movable generators can be very useful according to the circumstances of patients, but there remains a restraint that AC220[V] in the hospitals must be provided. When examining a first-aid patient who stays distant from the hospital or when grouping patients caused by disaster, the services of doctors at emergency centers should be very restrictive. Hence, this study developed a portable digital X-ray power supply unit that are utilizable at the accident spot or in a moving ambulance. By using the nit, the information of patients can be transmitted to the emergency center on the spot and thereby doctors can make a correct diagnosis. The properties of the unit are as follows: First, portable batteries(DCl2[V]) are utilized as electric source for the wit. Second PIC16F84A is utilized as control circuit in order to guarantee considerable reliance and to provide various functions. This portable digital X-ray power supply unit is expected to contribute to the emergency medical service system to be more advanced.

A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Cho, Gyu-Pan;Jung, Do-Young;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant converter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant converter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

An Optimal Location of Superconducting Fault Current Limiter in Distribution Network with Distributed Generation Using an Index of Distribution Reliability Sensitivity (신뢰도 민감도 지수를 이용한 복합배전계통 내 초전도한류기의 최적 위치에 관한 연구)

  • Kim, Sung-Yul;Kim, Wook-Won;Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.52-59
    • /
    • 2010
  • As electric power demand of customers is constantly increasing, more bulk power systems are needed to install in a network. By development of renewable energies and high-efficient facilities and deregulated electricity market, moreover, the amount of distributed resource is considerably increasing in distribution network consequently. Also, distribution network has become more and more complex as mesh network to improve the distribution system reliability and increase the flexibility and agility of network operation. These changes make fault current increase. Therefore, the fault current will exceed a circuit breaker capacity. In order to solve this problem, replacing breaker, changing operation mode of system and rectifying transformer parameters can be taken into account. The SFCL(Superconducting Fault Current Limiter) is one of the most promising power apparatus. This paper proposes a methodology for on optimal location of SFCL. This place is defined as considering the decrement of fault current by component type and the increment of reliability by customer type according to an location of SFCL in a distribution network connected with DG(Distributed Generation). With case studies on method of determining optimal location for SFCL applied to a radial network and a mesh network respectively, we proved that the proposed method is feasible.

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

Charge-discharge Characteristics of $LiCoO_2/Li$ Rechargeable Cell ($LiCoO_2/Li$ 2차전지의 충방전 특성)

  • Moon, S.I.;Doh, C.H.;Jeong, E.D.;Kim, B.S.;Park, D.W.;Yun, M.S.;Yeom, D.H.;Jeong, M.Y.;Park, C.J.;Yun, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.79-84
    • /
    • 1993
  • This paper describes the development of lithium rechargeable cell. $LiCoO_2$ is recently recognized as a suitable cathode active material of a high voltage, high energy lithium rechargeable batteries because $Li^+$ ion can be electrochemically deintercalated/intercalated from/to $Li_xCoO_2$. The transition metal oxide of $LiCoO_2$ was investigated for using as a cathode active material of 4V class Li rechargeable cell. $LiCoO_2$ cathode was prepared by using a active material of 85 wt%, graphite powder of 12 wt% as a conductor and poly-vinylidene fluoride of 3 wt% as a binder. The electrochemical and charge/discharge properties of $LiCoO_2$ were investigated by cyclic voltammetry and galvanostatic charge/discharge. The open circuit voltage of prepared $LiCoO_2$ electrode exhibited approximately. potential range between 3.32V and 3.42V. During the galvanostatic charge/discharge, $LiCoO_2/Li$ cell showed stable cycling behavior at scan rate of 1mV/sec and potential range between 3.6V and 4.2V. Also its coulombic efficiency as function of cycling was 81%~102%. In this study the $LiCoO_2/Li$ cell showed the available discharge capacity of 90.1 mAh/g at current density of $1mA/cm^2$ and cell discharge voltage range between 3.6V~4.2V.

  • PDF

Stacked Pad Area Away Package Modules for a Radio Frequency Transceiver Circuit (RF 송수신 회로의 적층형 PAA 패키지 모듈)

  • Jee, Yong;Nam, Sang-Woo;Hong, Seok-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.687-698
    • /
    • 2001
  • This paper presents a three dimensional stacked pad area away (PAA) package configuration as an implementation method of radio frequency (RF) circuits. 224MHz RF circuits of intelligence traffic system(ITS) were constructed with the stacked PAA RF pakage configuration. In the process of manufacturing the stacked PAA RF pakage, RF circuits were partitioned to subareas following their function and operating frequency. Each area of circuits separated to each subunits. The operating characteristics of RF PAA package module and the electrical properties of each subunits were examined. The measurement of electrical parameters for solder balls which were interconnects for stacked PAA RF packages showed that the parasitic capacitance and inductance were 30fF and 120pH, respectively, which might be negligible in PAA RF packaging system. HP 4396B network/spectrum analyzer revealed that the amplification gain of a receiver and transmitter at 224 MHz was 22dB and 27dB, respectively. The gain was 3dB lower than designed values. The difference was probably generated from fabrication process of the circuits by employing commercial standard

  • PDF