• Title/Summary/Keyword: Electrical circuit

Search Result 7,395, Processing Time 0.033 seconds

Study on the Impulse Characteristics for applying to the Ultra-wideband Antennas (초광대역 안테나에 적용 가능한 임펄스 특성에 관한 연구)

  • Doojin Lee;Muhun Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.362-368
    • /
    • 2023
  • In this paper, we presented the characteristics of the impulse signal which is applicable to the ultra-wideband antennas. In general, the width of the impulse has around sub nano or pico seconds in the time domain, where it corresponds to the wideband in the frequency domain. We confirmed by experiment that the impulse has around 130ps of the pulse width and bandwidth of 4GHz when 10MHz of sine wave excited as an input pulse. The fidelity factor was calculated in the time domain and -10dB bandwidth in the frequency domain was investigated for resistively loaded dipole antennas with different resistance per unit length. The received impulse signal through the wideband antennas is confirmed in the time and frequency domains that received pulse is to be similar to the generated impulse. The fidelity and bandwidth of the quantity value are 0.98 and 3.4GHz, respectively.

Safety Verification of Mounting Flight Video and Data Recorder in the Military Aircraft (군용항공기 내 비행 영상 및 데이터 녹화기 장착에 관한 안전성 검증)

  • Jung-Hyuk Kwon;Gyeong-Nam Kim;Won-Hwa Hwang;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.42-57
    • /
    • 2023
  • In this paper, to increase the research capability of flight missions and maintenance in operating military aircraft, we studied the requirements for additional mounting of flight video and data recorders and safety verification methods. The verification process of the recorder equipment itself, structural safety in the aircraft system, power and electrical safety, electromagnetic compatibility, and impact of airworthiness are described in accordance with military standards and operating environment requirements. In addition, through ground/flight tests, the results of functional operation suitable for the influence and demand of interference between the flight video and data recorder and other systems are also presented.

GaN-based Low Noise Amplifier MMIC for X-band Applications (X-대역 응용을 위한 GaN 기반 저잡음 증폭기 MMIC)

  • Byeong-Ok Lim;Joo-Seoc Go;Sung-Chan Kim
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.33-37
    • /
    • 2024
  • In this paper, we report the design and the measurement of a X-band low noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) using a 0.25 ㎛ gate length microstrip GaN-on-SiC high electron mobility transistor (HEMT) technology. The developed X-band GaN-based LNA MMIC achieves small signal gain of 22.75 dB ~ 25.14 dB and noise figure of 1.84 dB ~ 1.94 dB in the desired band of 9 GHz to 10 GHz. Input and output return loss values are -11.36 dB ~ -24.49 dB and -11.11 dB ~ -17.68 dB, respectively. The LNA MMIC can withstand 40 dBm (10 W) input power without performance degradation. The chip dimensions are 3.67 mm × 1.15 mm. The developed GaN-based LNA MMIC is applicable to various X-band applications.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

Comparison and Analysis for the Topology of Bladeless Wind Power Generator (블레이드리스 풍력발전기의 토폴로지에 관한 비교·분석)

  • Junhyuk Min;Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • This study focuses on the modeling and analysis of the linear generator for a bladeless wind power generation to overcome the limitations and drawbacks of conventional wind turbines. A bladeless wind power generation system has the advantages of low land requirement for installation and maintenance cost compared to a blade wind power turbine. Nevertheless, question concerning the generator topology are not satisfying answered. The goal of the research is to compare and analyze the characteristics of horizontal and vertical structures of linear generator for bladeless wind power systems. The proposed topology will be analyzed using magnetic energy by equivalent magnetic circuit method, and then it has been compared and evaluated by finite element method. The results of this project will give elaborate information about new generator structures for wind power system and provide insights into the characteristics of bladeless wind power generation.

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

Studies on LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$ based Glassy Solid Electrolytes (LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$계 유리고체전해질에 관한 연구)

  • Park, Gang-Seok;Gang, Eun-Tae;Kim, Gi-Won;Han, Sang-Mok
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.614-623
    • /
    • 1993
  • Electrical characteristics of LiF-$Li_{2}O-B_{2}O_{3}-P_{2}O_5$ glasses with fixed $Li_2O$ content have been investigated by using AC impedance spectroscopy. Part of the total lithium ions present in these glasses contributes to conduction, and the changes in electrical conductivity with composition was inconsistent with the weak electrolyte model. The power law could not be used to determine the hopping ion concentration in these glasses. Both mobile carrier density and mobility have been modified as Li were added in the form of LiF. The formation of $(B-O-P)^-,di^-$, and metaborate group gave additional available sites for Li+ diffusion causing the enhancement of conductivity. The observed maximum conductivity was $2.43 \times 10^{-4}$S/cm at $150^{\circ}C$ at the composition containing 8mol% LiF. The decomposion potential amounted to 5.94V. The Li/glass electrolyte/$TiS_2$ solid-state cell showed open circuit voltage of 3.14V and energy density of 22 Wh/Kg at $150^{\circ}C$.

  • PDF

Analysis of Parameter Characteristic of Parallel Electrodes Conduction-cooled Film Capacitor for HF-LC Resonance (고주파 LC 공진을 위한 병렬전극 전도냉각 필름커패시터의 파라메타 특성 분석)

  • Won, Seo-Yeon;Lee, Kyeong-Jin;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.155-166
    • /
    • 2016
  • It is important to configure capacitance(C) of the capacitor and the induction coefficient(L) of the work coil on the resonant circuit design stage in order to induce heating on the object by a precise and constant frequency components in the electromagnetic induction heating equipment. Work coil conducts a direct induction heating according to heating point and area of the object which has a fixed heat factor so that work coil is designed to has fixed value. On the other hands, Capacitor should be designed to be changed in order to be the higher the utilization of the entire equipment. It is extracted the samples by variation of single electrode capacity from the selection stage of raw materials for capacity to the stage of process design for output of the high frequency LC resonance of 700kHz on 1000 VAC maximum voltage and current to $200I_{MAX}$. It is suggested fundamental experiment results in order to prove relation for the optimal design of HF-LC resonance conduction-cooled capacitor based on the response of frequency characteristics and results of output parameters according to variation of the capacitance size.

Design of a Bit-Level Super-Systolic Array (비트 수준 슈퍼 시스톨릭 어레이의 설계)

  • Lee Jae-Jin;Song Gi-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.45-52
    • /
    • 2005
  • A systolic array formed by interconnecting a set of identical data-processing cells in a uniform manner is a combination of an algorithm and a circuit that implements it, and is closely related conceptually to arithmetic pipeline. High-performance computation on a large array of cells has been an important feature of systolic array. To achieve even higher degree of concurrency, it is desirable to make cells of systolic array themselves systolic array as well. The structure of systolic array with its cells consisting of another systolic array is to be called super-systolic array. This paper proposes a scalable bit-level super-systolic amy which can be adopted in the VLSI design including regular interconnection and functional primitives that are typical for a systolic architecture. This architecture is focused on highly regular computational structures that avoids the need for a large number of global interconnection required in general VLSI implementation. A bit-level super-systolic FIR filter is selected as an example of bit-level super-systolic array. The derived bit-level super-systolic FIR filter has been modeled and simulated in RT level using VHDL, then synthesized using Synopsys Design Compiler based on Hynix $0.35{\mu}m$ cell library. Compared conventional word-level systolic array, the newly proposed bit-level super-systolic arrays are efficient when it comes to area and throughput.

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.